Log in

Ruthenium catalysts based on mesoporous aromatic frameworks for the hydrogenation of arenes

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Novel catalysts consisting of ruthenium nanoparticles supported on diamond-like porous aromatic frameworks (PAFs) with 3 and 4 benzene rings in the edges have been synthetized with a narrow particle size distribution (0.85 and 1.10 nm respectively). Several techniques, such as N2 physisorption, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and solid-state nuclear magnetic resonance were used for characterizing the synthesized materials. The obtained catalysts appeared to be active in the hydrogenation of various aromatic substances (specific catalytic activity reached activities up to 2660 mol(Sub) h−1 mol −1(Ru) in the case of phenol). Notably, a size-selective hydrogenation was observed for catalysts based on PAFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Maksimov AL, Sakharov DA, Filippova TY, Zhuchkova AY, Karakhanov EA (2005) Ind Eng Chem Res 44(23):8644–8653

    Article  CAS  Google Scholar 

  2. Karakhanov EA, Karapetyan LM, Kardasheva YS, Maksimov AL, Runova EA, Terenina MV, Filippova TY (2008) Macromol Symp 270:106–116

    Article  CAS  Google Scholar 

  3. Brinker UH, Mieusset JL (2010) Molecular encapsulation: organic reactions in constrained systems. Wiley, New York

    Book  Google Scholar 

  4. Peters R (2015) Cooperative catalysis: designing efficient catalysts for synthesis. Wiley, New York

    Book  Google Scholar 

  5. Merino E, Verde-Sesto E, Maya EM, Corma A, Iglesias M, Sanchez F (2014) Appl Catal A: Gen 469:206–212

    Article  CAS  Google Scholar 

  6. Jiang JX, Su F, Trewin A, Wood CD, Campbell NL, Miu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI (2007) Angew. Chem. 119:8728–8732

    Article  Google Scholar 

  7. Jiang JX, Su F, Trewin A, Wood CD, Campbell NL, Miu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI (2007) Angew Chem Int Ed 46:8574–8578

    Article  CAS  Google Scholar 

  8. Yuan S, Dorney B, White D, Kirklin S, Zapol P, Yu L, Liu DJ (2010) Chem Commun 46:4547–4549

    Article  CAS  Google Scholar 

  9. Murray LJ, Dinca M, Long JR (2009) Chem Soc Rev 38:1294–1314

    Article  CAS  Google Scholar 

  10. Li JR, Ryan JK, Zhou HC (2009) Chem Soc Rev 38:1477–1504

    Article  CAS  Google Scholar 

  11. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Chem Soc Rev 38:1450–1459

    Article  CAS  Google Scholar 

  12. Kaur P, Hupp JT, Nguyen ST (2011) ACS Catal 1:819–835

    Article  CAS  Google Scholar 

  13. Verde-Sesto E, Pintado-Sierra M, Corma A, Maya EM, de la Campa JG, Iglesias M, Sanchez F (2014) Chem Eur J 20:5111–5120

    Article  CAS  Google Scholar 

  14. Holst JR, Stöckel E, Adams DJ, Cooper AI (2010) Macromolecules 43:8531–8538

    Article  CAS  Google Scholar 

  15. Jiang JX, Su F, Trewin A, Wood CD, Niu H, Jones JTA, Khimyak YZ (2008) J Am Chem Soc 130(24):7710–7720

    Article  CAS  Google Scholar 

  16. Schmidt J, Werner M, Thomas A (2009) Macromolecules 42:4426–4429

    Article  CAS  Google Scholar 

  17. Ben T, Ren H, Ma S, Cao D, Lan J, **g X, Wang W, Xu J, Deng F, Simmons JM, Qiu S, Zhu G (2009) Angew Chem Int Ed 48:9457–9460

    Article  CAS  Google Scholar 

  18. Chen L, Honsho Y, Seki S, Jiang D (2010) J Am Chem Soc 132:6742–6748

    Article  CAS  Google Scholar 

  19. Weber J, Thomas A (2008) J Am Chem Soc 130(20):6334–6335

    Article  CAS  Google Scholar 

  20. Fritsch J, Drache F, Nickerl G, Böhlmann W, Kaskel S (2013) Microporous Mesoporous Mat 172:167–173

    Article  CAS  Google Scholar 

  21. Jiang JX, Wang C, Laybourn A, Hasell T, Clowes R, Khimyak YZ, **ao J, Higgins SJ, Adams DJ, Cooper AI (2011) Angew Chem Int Ed 50:1072–1075

    Article  CAS  Google Scholar 

  22. Zhang P, Qiao ZA, Jiang X, Veith GM, Dai S (2015) Nano Lett 15:823–828

    Article  CAS  Google Scholar 

  23. Li L, Zhao H, Wang R (2015) ACS Catal 5(2):948–955

    Article  CAS  Google Scholar 

  24. Zhang Q, Yang Y, Zhang S (2013) Chem Eur J 19:10024–10029

    Article  CAS  Google Scholar 

  25. Lu J, Zhang J (2014) J Mater Chem A 2:13831–13834

    Article  CAS  Google Scholar 

  26. Maximov A, Zolotukhina A, Murzin V, Karakhanov E, Rosenberg E (2015) ChemCatChem 7:1197–1210

    Article  CAS  Google Scholar 

  27. Yuan Y, Sun F, Ren H, **g X, Wang W, Ma H, Zhao H, Zhu G (2011) J Mater Chem 21:13498–13502

    Article  CAS  Google Scholar 

  28. Zhang Q, Zhang S, Li S (2012) Macromolecules 45:2981–2988

    Article  CAS  Google Scholar 

  29. Schröder F, Esken D, Cokoja M, van den Berg MWE, Lebedev OI, Van Tendeloo G, Walaszek B, Buntkowsky G, Limbach HH, Chaudret B, Fischer RA (2008) J Am Chem Soc 130(19):6119–6130

    Article  Google Scholar 

  30. Shen JY, Adnot A, Kaliaguine S (1991) Appl Surf Sci 51:47–60

    Article  CAS  Google Scholar 

  31. Kozuch S, Martin JML (2012) ACS Catal 2:2787–2794

    Article  CAS  Google Scholar 

  32. Lente G (2013) ACS Catal 3:381–382

    Article  CAS  Google Scholar 

  33. Crooks AB, Yih KH, Li L, Yang JC, Özkar S, Finke RG (2015) ACS Catal 5:3342–3353

    Article  CAS  Google Scholar 

  34. Maksimov AL, Kuklin SN, Kardasheva YS, Karakhanov EA (2013) Petroleum Chem 53(3):177–184

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Russian Science Foundation within a framework of Project N 15-19-00099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Karakhanov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maximov, A., Zolotukhina, A., Kulikov, L. et al. Ruthenium catalysts based on mesoporous aromatic frameworks for the hydrogenation of arenes. Reac Kinet Mech Cat 117, 729–743 (2016). https://doi.org/10.1007/s11144-015-0956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0956-7

Keywords

Navigation