Log in

Structure and Properties of TiN–Pb Magnetron Coatings on VT6 and 12Kh18N10T Alloys

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—The influence of the parameters of dc reaction magnetron sputtering of two monoelement targets (Ti, Pb) onto substrates made of a VT6 titanium alloy and 12Kh18N10T steel on the microhardness, the phase composition, and the texture of the sputtered composite coatings is studied. The coatings consist only of Pb and PbO at a lead cathode current of 0.2 A and also include TiN at a current of 0.1 A. The coatings on the VT6 alloy have a higher microhardness as compared to the coatings on 12Kh18N10T steel, which is due to the nitriding-assisted hardening of titanium substrate. The following correlation of the texture with the microhardness is found: the (111) pole density increases threefold and the microhardness of coatings decreases sharply when the ratio of the argon and nitrogen flow rates increases from 2.08 to 4.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Ghufran, G. M. Uddin, S. M. Arafat, M. Jawad, and A. Rehman, “Development and tribo-mechanical properties of functional ternary nitride coatings: applications-based comprehensive review,” Proc. Inst. Mech. Eng. Part J: J. Eng. Trib. 235 (1), 196–232 (2021).

  2. A. K. Tareen, G. S. Priyanga, S. Behara, T. Thomas, and M. Yang, “Mixed ternary transition metal nitrides: a comprehensive review of synthesis, electronic structure, and properties of engineering relevance,” Prog. Solid State Chem. 53, 1–26 (2019).

  3. M. P. Ananth and R. Ramesh, “Sliding wear characteristics of solid lubricant coating on titanium alloy surface modified by laser texturing and ternary hard coatings,” Trans. Nonfer. Metals Soc. China 27, 839–847 (2017).

  4. V. K. W. Grips, H. C. Barshilia, V. E. Selvi, and K. S. Rajam, “Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron,” Thin Solid Films 514, 204–211 (2006).

  5. Z.-Y. Zhou, X.-B. Liu, S.-G. Zhuang, X.-H. Yang, M. Wang, and C.-F. Sun, “Preparation and high temperature tribological properties of laser in-situ synthesized self-lubricating composite coatings containing metal sulfides on Ti6Al4V alloy,” Appl. Surf. Sci. 481, 209–218 (2019).

  6. S. Kowalski and M. Cygnar, “The application of TiSiN/TiAlN coatings in the mitigation of fretting wear in push fit joints,” Wear A 426427, 725–734 (2019).

  7. C. Muratore and A. A. Voevodin, “Chameleon coatings: adaptive surfaces to reduce friction and wear in extreme environments,” Ann. Rev. Mater. Res. 39, 297–324 (2009).

  8. Z. G. Lia, S. Miyake, M. Kumagai, H. Saito, and Y. Muramatsu, “Hard nanocomposite Ti–Cu–N films prepared by d.c. reactive magnetron co-sputtering,” Surf. Coat. Technol. 183, 62–68 (2004).

  9. C. B. Wei, X. B. Tian, Y. Yang, S. Q. Yang, R. K. Y. Fu, and P. K. Chu, “Microstructure and tribological properties of Cu–Zn/TiN multilayers fabricated by dual magnetron sputtering,” Surf. Coat. Technol. 202 (1), 189–193 (2007).

  10. A. M. Qasim, F. Ali, H. Wu, R. K. Y. Fu, S. **ao, Y. Li, Z. Wu, and P. K. Chu, “Effects of ion flux density and energy on the composition of TiNx thin films prepared by magnetron sputtering with an anode layer ion source,” Surf. Coat. Technol. 365, 58–64 (2019).

  11. L. Tian, X. B. Zhu, J. Tang, and J. He, “Microstructure and mechanical properties of Cr–N coatings by ion-beam-assisted magnetron sputtering,” Mater. Sci. Eng. A 483484, 751–754 (2008).

  12. B. Škorić, D. Kakaš, N. Bibic, and M. Rakita, “Microstructural studies of TiN coatings prepared by PVD and IBAD,” Surface Sci. 566568, 40–44 (2004).

  13. T. Sawase, K. Yoshida, Y. Taira, K. Kamada, M. Atsuta, and K. J. Baba, “Abrasion resistance of titanium nitride coatings formed on titanium by ion-beam-assisted deposition,” J. Oral Rehabil. 32, 151–157 (2005).

  14. Y. X. Oua, H. Q. Wang, B. Liao, M. K. Lei, and X. P. Ouyang, “Tribological behaviors in air and seawater of CrN/TiN superlattice coatings irradiated by high-intensity pulsed ion beam,” Ceram. Int. 45, 24405–24412 (2019).

  15. H. Liang, D. Zhou, X. Sun, S. Chu, and Y. Bai, “Thickness dependent microstructural and electrical properties of TiN thin films prepared by DC reactive magnetron sputtering,” Ceram. Int. 42, 2641–2647 (2016).

  16. P. Bielec, R. Nelson, R. P. Stoffel, L. Eisenburger, D. Gunther, A.-K. Henss, J. P. Wright, O. Oeckler, R. Dronskowski, and W. Schnick, “Cationic Pb2 dumb bells stabilized in the highly covalent lead nitridosilicate Pb2Si5N8,” Angewandte Chem. Int. Ed. 58 (5), 1432–1436 (2019).

  17. S. Ya. Betsofen, L. M. Petrov, E. M. Lazarev, and N. A. Korotkov, “Structure and properties of ion–plasma TiN coatings,” Izv. Akad. Nauk SSSR, Ser. Met., No. 3, 158–165 (1990).

  18. S. Ya. Betsofen, L. M. Petrov, A. A. Lozovan, A. S. Lenkovets, I. A. Grushin, and M. A. Lebedev, “Effect of bias voltage on texture formation in a TiN, ZrN, Ta, Nb and W coatings,” J. Physics: Confer. Ser. 1713 (1), 012010 (2020).

  19. S. Ya. Betsofen, V. V. Plikhunov, L. M. Petrov, and I. O. Bannykh, “Phase composition and structure of multicomponent vacuum ion–plasma coatings (Ti,Nb,Me)N and (Zr,Nb)N(C) as functions of their chemical composition and technological parameters,” Aviats. Prom., No. 4, 9–15 (2007).

  20. N. Arshi, J. Lu, Y. K. Joo, C. G. Lee, J. H. Yoon, and F. Ahmed, “Study on structural, morphological and electrical properties of sputtered titanium nitride films under different argon gas flow,” Mater. Chem. Phys. 134, 839–844 (2012).

  21. S. Zhang, F. Yan, Y. Yang, M. Yan, Y. Zhang, J. Guo, and H. Li, “Effects of sputtering gas on microstructure and tribological properties of titanium nitride films,” Appl. Surf. Sci. 488, 61–69 (2019).

  22. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, New York, 1958).

    Google Scholar 

  23. S. Ya. Betsofen, L. M. Petrov, A. A. Il’in, I. O. Bannykh, and A. N. Lutsenko, “Effect of texture and composition heterogeneity on the measurement of the residual stresses in ion–plasma coatings,” Poverkhnost, No. 1, 39–45 (2004).

    Google Scholar 

  24. S. Ya. Betsofen, S. V. Skvortsova, L. M. Petrov, and I. O. Bannykh, “Structural aspects of the ion nitriding of titanium alloys,” Metally, No. 3, 6–15 (2002).

    Google Scholar 

  25. I. Petrov, L. Hultman, J. E. Sundgren, and J. E. Greene, “Polycrystalline TiN films deposited by reactive bias magnetron sputtering: effects of ion bombardment on resputtering rates, film composition, and microstructure,” J. Vac. Sci. Technol., A 10, 265–272 (1992).

  26. R. E. Somekh, “The thermalization of energetic atoms during the sputtering process,” J. Vac. Sci. Technol., A 2, 1285–1291 (1984).

  27. S. Ya. Betsofen, A. A. Ashmarin, L. M. Petrov, I. A. Grushin, and M. A. Lebedev, “Influence of the ion–plasma process parameters on the texture and properties of TiN and ZrN coatings,” Deform. Razrushenie Mater., No. 4, 2–9 (2021).

  28. A. Saerens, P. Van Houtte, B. Meert, and C. Quaeyhaegens, “Assessment of different X-ray stress measuring techniques for thin titanium nitride coatings,” J. Appl. Cryst. 33, 312–322 (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Betsofen.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozovan, A.A., Betsofen, S.Y., Pavlov, Y.S. et al. Structure and Properties of TiN–Pb Magnetron Coatings on VT6 and 12Kh18N10T Alloys. Russ. Metall. 2021, 1121–1127 (2021). https://doi.org/10.1134/S0036029521090093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521090093

Keywords:

Navigation