Log in

Impact of Porous Matrix Morphology on the Phase Diagrams in the GaInSn Alloy Under Nanoconfinement

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Gallium alloys are widespread materials in microelectronics and are promising as components of nanocomposites for using in soft robotics, wearable electronics, and sensors. Here, we present NMR studies of the impact of a particular nanoconfinement on the phase diagram for the GaInSn eutectic alloy in a porous Al2O3 ceramic template with the middle pore size 11 nm. Measurements of the NMR spectra and Knight shifts were carried out for 71Ga, 69Ga, and 115In isotopes from 180 to 310 K. The precipitation of gallium-rich segregates with crystalline structures of α- and β-Ga was found at cooling. The evolution of the NMR lines during cooling and warming evidenced the occurrence of the liquid–liquid-phase transition in the melt fraction with pronounced amount of indium. The results obtained for the GaInSn alloy embedded into the porous aluminum oxide ceramic were found to differ remarkably from the phase diagrams of the alloy confined within silica opal and glass porous matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Alloyeau, C. Mottet, C. Ricolleau, Nanoalloys, synthesis, structure and properties (Springer-Verlag, London, 2012)

    Book  Google Scholar 

  2. Z. Li, Y. Guo, Y. Zong, K. Li, S. Wang, H. Cao, C. Teng, Nanomaterials 11, 2246 (2021)

    Article  Google Scholar 

  3. Metallic Nanostructures. From Controlled Synthesis to Applications, Eds.: Y. **ong, X. Lu (Springer International Publishing: Switzerland, 2015)

  4. K. Akyildiz, J.-H. Kim, J.-H. So, H.-J. Koo, J. Ind. Eng. Chem. 116, 120 (2022)

    Article  Google Scholar 

  5. C.-C. Qu, Y.-T. Liang, X.-Q. Wang, S. Gao, Z.-Z. He, X.-Y. Sun, Bioengineering 9, 416 (2022)

    Article  Google Scholar 

  6. H. Song, T. Kim, S. Kang, H. **, K. Lee, H.J. Yoon, Small 15, 1903391 (2019)

    Google Scholar 

  7. M.K. Lee, C. Tien, E.V. Charnaya, H.-S. Sheu, Y.A. Kumzerov, Phys. Lett. A 374, 1570 (2010)

    Article  ADS  Google Scholar 

  8. A.V. Uskov, E.V. Charnaya, A.I. Kuklin, M.-K. Lee, L.-J. Chang, Y.A. Kumzerov, A.V. Fokin, Nanomaterials 13, 1357 (2023)

    Article  Google Scholar 

  9. M.V. Likholetova, E.V. Charnaya, E.V. Shevchenko, M.K. Lee, L.-J. Chang, Y.A. Kumzerov, A.V. Fokin, Nanomaterials 13, 280 (2023)

    Article  Google Scholar 

  10. A.A. Vasilev, DYu. Podorozhkin, DYu. Nefedov, E.V. Charnaya, V.M. Mikushev, Yu.A. Kumzerov, A.V. Fokin, Appl. Magn. Reson. 53, 1649 (2022)

    Article  Google Scholar 

  11. A.V. Uskov, E.V. Charnaya, A.I. Kuklin, M.-K. Lee, L.-J. Chang, Y.A. Kumzerov, A.V. Fokin, Nanomaterials 12, 2245 (2022)

    Article  Google Scholar 

  12. DYu. Nefedov, E.V. Charnaya, A.V. Uskov, A.O. Antonenko, DYu. Podorozhkin, J. Haase, Yu.A. Kumzerov, A.V. Fokin, Appl. Magn. Reson. 52, 1721 (2021)

    Article  Google Scholar 

  13. D.Y. Nefedov, D.Y. Podorozhkin, E.V. Charnaya, A.V. Uskov, J. Haase, Y.A. Kumzerov, A.V. Fokin, J. Phys. Condens. Matter 31, 255101 (2019)

    Article  ADS  Google Scholar 

  14. Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, R. Novakovic, J. Chem. Eng. Data 59, 757 (2014)

    Article  Google Scholar 

  15. H.K. Christenson, J. Phys. Condens. Matter 13, R95 (2001)

    Article  ADS  Google Scholar 

  16. H. Tanaka, J. Chem. Phys. 153, 130901 (2020)

    Article  ADS  Google Scholar 

  17. P.H. Poole, T. Grande, C.A. Angell, P.F. McMillan, Science 275, 322 (1997)

    Article  Google Scholar 

  18. P. Debenedetti, S.A. Rice, A.R. Dinner, Liquid polymorphism (Wiley, Hoboken, 2013)

    Google Scholar 

  19. C. Tien, E.V. Charnaya, W. Wang, Yu.A. Kumzerov, D. Michel, Phys. Rev. B 74, 024116 (2006)

    Article  ADS  Google Scholar 

  20. DYu. Nefedov, E.V. Charnaya, A.V. Uskov, DYu. Podorozhkin, A.O. Antonenko, J. Haase, Yu.A. Kumzerov, Phys. Solid State 60, 2640 (2018)

    Article  ADS  Google Scholar 

  21. W. Xu, M.T. Sandor, Y. Yu, H.-B. Ke, H.-P. Zhang, M.-Z. Li, W.-H. Wang, L. Liu, Y. Wu, Nat. Commin. 6, 7696 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Russian Science Foundation, under Grant No. 21-72-20038. Measurements were carried out using the equipment of the Research park of St. Petersburg State University.

Funding

The studies were financially supported by Russian Science Foundation, under Grant No. 21-72-20038.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A.A. Vasilev and E.V. Charnaya; methodology: A.A. Vasilev and D.Yu. Nefedov; formal analysis and investigation: A.A. Vasilev and D.Yu. Nefedov; writing—original draft preparation: A.A. Vasilev; writing—review and editing: E.V. Charnaya; funding acquisition: Yu.A. Kumzerov; resources: A.V. Fokin; supervision: E.V. Charnaya and Yu.A. Kumzerov. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. A. Vasilev.

Ethics declarations

Conflict of Interest

The authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilev, A.A., Nefedov, D.Y., Charnaya, E.V. et al. Impact of Porous Matrix Morphology on the Phase Diagrams in the GaInSn Alloy Under Nanoconfinement. Appl Magn Reson (2024). https://doi.org/10.1007/s00723-024-01672-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00723-024-01672-w

Navigation