Log in

Preparation and Study of the Adsorption Performances of (Mg,Ca,Ba)Fe2O4 Magnetic Porous Materials for Removal of Cd(II) Heavy Metal Ion from Water Environment

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A modified polyacrylamide gel route with urea used as fuel was used to synthesize the MFe2O4 (M = Mg, Ca, Ba) iron oxides with high adsorption capacity for removal of Cd(II) from water treatment. The phase structure, functional group, porous structure and adsorption performance of MFe2O4 (M = Mg, Ca, Ba) iron oxides were characterized by X-ray-diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), N2 adsorption–desorption isotherm and 721 spectrophotometer. The result indicates that the phase forming temperature of MFe2O4, the content of carbonate ion in MFe2O4 increases with the increasing of the radius of M-site metal ion. The Eg value, BET surface area and adsorption capacity for removal of Cd(II) from water treatment decreases with the increasing of the radius of M-site metal ion. The experimental isotherm of MFe2O4 (M = Mg, Ca, Ba) iron oxides were described by the Langmuir model. MgFe2O4 iron oxide exhibits a best adsorption performance for removal of Cd(II) from water treatment by the adsorption process, with a maximum adsorption capacity of ca. 221.36 mg/g than that of other iron oxides. The present synthetic route could be possibly extended to synthesize other porous metal oxide materials with special porous structures for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Z. Song, X. Chen, X. Gong, et al., Opt. Mater. 100, 109642 (2020).

  2. M. Sharma, M. Poddar, Y. Gupta, et al., Mater. Today Chem. 17, 100336 (2020).

  3. P. S. Gordienko, I. A. Shabalin, S. B. Yarusova, et al., Russ. J. Phys. Chem. A 93, 2284 (2019).

    Article  CAS  Google Scholar 

  4. M. F. Cheira, M. N. Rashed, A. E. Mohamed, et al., Mater. Today Chem. 14, 100176 (2019).

  5. X. Song, F. Ke, C. Ge, et al., Russ. J. Phys. Chem. A 93, 522 (2019).

    Article  Google Scholar 

  6. D. Dutta, S. K. Roy, B. Das, and A. K. Talukdar, Russ. J. Phys. Chem. A 92, 976 (2018).

    Article  CAS  Google Scholar 

  7. W. W. Aji and E. Suharyadi, Mater. Sci. Forum 901, 142 (2017).

    Article  Google Scholar 

  8. V. Srivastava, Y. C. Sharma, and M. Sillanpää, Appl. Surf. Sci. 338, 42 (2015).

    Article  CAS  Google Scholar 

  9. S. M. Yakout, M. R. Hassan, and M. I. Aly, Water Sci. Technol. 77, 2714 (2018).

    Article  CAS  Google Scholar 

  10. J. Nonkumwong, S. Ananta, and L. Srisombat, RSC Adv. 6, 47382 (2016).

    Article  CAS  Google Scholar 

  11. D. Kang, X. Yu, M. Ge, and W. Song, Microporous Mesoporous Mater. 207, 170 (2015).

    Article  CAS  Google Scholar 

  12. S. Shi, Q. Dong, Y. Wang, X. Zhang, et al., Sep. Purif. Technol. 266, 118584 (2021).

  13. M. Kaur, N. Kaur, K. Jeet, and P. Kaur, Ceram. Int. 41, 13739 (2015).

    Article  CAS  Google Scholar 

  14. H. Kenfoud, N. Nasrallah, O. Baaloudj, et al., Optik 223, 165610 (2020).

  15. S. F. Wang, X. T. Zu, G. Z. Sun, et al., Ceram. Int. 42, 19133 (2016).

    Article  CAS  Google Scholar 

  16. S. F. Wang, Q. Li, X. T. Zu, et al., J. Magn. Magn. Mater. 419, 464 (2016).

    Article  CAS  Google Scholar 

  17. Y. Zhang, J. Liu, G. Wu, and W. Chen, Nanoscale 4, 5300 (2012).

    Article  CAS  Google Scholar 

  18. I. Omkaram and S. Buddhudu, Opt. Mater. 32, 8 (2009).

    Article  CAS  Google Scholar 

  19. S. Wang, H. Gao, L. Fang, et al., Chem. Eng. J. Adv. 6, 100089 (2021).

  20. A. Ullah, M. Usman, W. Qingyu, et al., Opt. Mater. 116, 111097 (2021).

  21. S. Wang, H. Gao, J. Li, et al., J. Phys. Chem. Solid 150, 109891 (2021).

  22. P. Singh, A. Sudhaik, P. Raizada, et al., Mater. Today Chem. 12, 85 (2019).

    Article  CAS  Google Scholar 

  23. J. Li, S. Wang, G. Sun, et al., Mater. Today Chem. 19, 100390 (2021).

  24. P. Prajapat, S. Dhaka, and H. S. Mund, J. Electron. Mater. 50, 4671 (2021).

    Article  CAS  Google Scholar 

  25. M. Kaur, M. K. Ubhi, J. K. Grewal, and D. Singh, J. Phys. Chem. Solid 154, 110060 (2021).

  26. A. Syed, A. H. Bahkali, and A. M. Elgorban, Opt. Mater. 113, 110595 (2021).

  27. S. Wang, X. Chen, H. Gao, et al., J. Nano Res. 67, 1 (2021).

    Article  CAS  Google Scholar 

  28. H. Gao, H. Yang, and S. Wang, Trans. Indian Ceram. Soc. 77, 150 (2018).

    Article  CAS  Google Scholar 

  29. Y. Yang, Y. Jiang, Y. Wang, et al., Mater. Chem. Phys. 105, 154 (2007).

    Article  CAS  Google Scholar 

  30. R. Dilip, R. Jayaprakash, P. Sangaiya, and S. Gopi, Result. Mater. 7, 100121 (2020).

  31. S. Wang, S. Tang, H. Gao, et al., Opt. Mater. 118, 111273 (2021).

  32. M. Shahid, L. **gling, Z. Ali, et al., Mater. Chem. Phys. 139, 566 (2013).

    Article  CAS  Google Scholar 

  33. S. Taghavi Fardood, F. Moradnia, M. Mostafaei, et al., Nanochem. Res. 4, 86 (2019).

    Google Scholar 

  34. A. Becker, K. Kirchberg, and R. Marschall, Z. Phys. Chem. 234, 645 (2020).

    Article  CAS  Google Scholar 

  35. B. Tan, Y. Fang, Q. Chen, et al., Opt. Mater. 109, 110470 (2020).

  36. S. Mandizadeh, M. Salavati-Niasari, and M. Sadri, Sep. Purif. Technol. 175, 399 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by project of the energy bureau of Jilin province of China, grant no. 3d516l911425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Liu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, M. Preparation and Study of the Adsorption Performances of (Mg,Ca,Ba)Fe2O4 Magnetic Porous Materials for Removal of Cd(II) Heavy Metal Ion from Water Environment. Russ. J. Phys. Chem. 96, 1761–1767 (2022). https://doi.org/10.1134/S0036024422080283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422080283

Keywords:

Navigation