Log in

Exploring the Substituent Еffect on the Structure and Еlectronic Рroperties of Si2(para-C6H4X)2 Мolecules

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Substituent effect on the structure and electronic properties of the Si2(para-C6H4X)2 molecules (X = NH2, OH, Me, H, F, Cl, CN, NO2) were studied at wB97XD/6-311G(d,p) level of theory. The substituent effect on the structural parameters, reactivity parameters (hardness, chemical potential and electrophilicity) and 29Si NMR chemical shift was explored. Stability of the Si(para-C6H4X) fragments were investigated in the doublet and quartet states for illustration of the Si≡Si bond character. Substituent influence on the stability of these different spin multiplicities of Si(para-C6H4X) fragments was investigated. The Si–Si bonding situation in the studied molecules was examined via the Shubin Liu’s energy decomposition analysis (EDA-SBL), adaptive natural density partitioning (AdNDP), and Quantum theory of atoms in molecules (QTAIM) schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. Weidenbruch, The Chemistry of Organic Silicon Compounds (Wiley, Chichester, 2001).

    Google Scholar 

  2. P. P. Power, Chem. Rev. 99, 3463 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. G. H. Robinson, Acc. Chem. Res. 32, 773 (1999).

    Article  CAS  Google Scholar 

  4. P. Jutzi, Angew. Chem., Int. Ed. 39, 3797 (2000).

    Article  CAS  Google Scholar 

  5. M. Weidenbruch, J. Organomet. Chem. 646, 39 (2002).

    Article  CAS  Google Scholar 

  6. A. Sekiguchi, M. Ichinohe, and R. Kinjo, Bull. Chem. Soc. Jpn. 79, 825 (2006).

    Article  CAS  Google Scholar 

  7. A. Sekiguchi, S. S. Zigler, R. West, and J. Michl, J. Am. Chem. Soc. 108, 4241 (1986).

    Article  CAS  Google Scholar 

  8. A. Sekiguchi, S. S. Zigler, K. J. Haller, and R. West, Recl. Trav. Chim. Pays-Bas. 107, 197 (1988).

    Article  CAS  Google Scholar 

  9. N. Wiberg, S. K. Vasisht, G. Fischer, and P. Mayer, Z. Anorg. Allgem. Chem. 630, 1823 (2004).

    CAS  Google Scholar 

  10. A. Sekiguchi, R. Kinjo, and M. Ichinohe, Science (Washington, DC, U. S.) 305, 1755 (2004).

    Article  CAS  Google Scholar 

  11. M. M. Law, J. T. Fraser-Smith, and C. U. Perotto, Phys. Chem. Chem. Phys. 14, 6922 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. M. Lein, A. Krapp, and G. Frenking, J. Am. Chem. Soc. 127, 6290 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. I. Papai, Theor. Chem. Acc. 104, 131 (2000).

    Article  CAS  Google Scholar 

  14. X. Li, B. Kiran, and L.-S. Wang, J. Phys. Chem. A 109, 4366 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. M. T. Nguyen, D. Sengupta, and L. G. Vanquickenborne, Chem. Phys. Lett. 244, 83 (1995).

    Article  CAS  Google Scholar 

  16. T. C. Smith, C. J. Evans, and D. J. Clouthier, J. Chem. Phys. 118, 1642 (2003).

    Article  CAS  Google Scholar 

  17. R. I. Kaiser and Y. Osamura, Astrophys. J. 630, 1217 (2005).

    Article  CAS  Google Scholar 

  18. S. Ishida, R. Sugawara, Y. Misawa, and T. Iwamoto, Angew. Chem., Int. Ed 52, 12869 (2013).

    Article  CAS  Google Scholar 

  19. R. Ghiasi, J. Struct. Chem. 51, 204 (2010).

    Article  CAS  Google Scholar 

  20. A. Stockmann, J. Kurzawa, N. Fritz, N. Acar, S. Schneider, J. Daub, R. Engl, and T. Clark, J. Phys. Chem. A 106, 7958 (2002).

    Article  CAS  Google Scholar 

  21. M. Ottonelli, M. Piccardo, D. Duce, S. Thea, and G. Dellepiane, J. Phys. Chem. A 116, 611 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Y.-H. Cheng, Y. Fang, X. Zhao, L. Liu, and Q.‑X. Guo, Bull. Chem. Soc. Jpn. 75, 1715 (2002).

    Article  CAS  Google Scholar 

  23. F. Pichierri, Theor. Chem. Acc. 136, 114 (2017).

    Article  CAS  Google Scholar 

  24. G. S. Remya and C. H. Suresh, Phys. Chem. Chem. Phys. 18, 20615 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. H. Szatylowicz, A. Jezuita, T. Siodła, K. S. Varaksin, M. A. Domanski, K. Ejsmont, and T. M. Krygowski, ACS Omega 2, 7163 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R. Ghiasi and A. Zamani, J. Chin. Chem. Soc. 64, 1340 (2017).

    Article  CAS  Google Scholar 

  27. R. Ghiasi, H. Pasdar, and S. Fereidoni, Russ. J. Inorg. Chem. 61, 327 (2016).

    Article  CAS  Google Scholar 

  28. R. Ghiasi and A. Heydarbeighi, Russ. J. Inorg. Chem. 61, 985 (2016).

    Article  CAS  Google Scholar 

  29. R. Ghiasi, H. Pasdar, and F. Irajizadeh, J. Chil. Chem. Soc. 60, 2740 (2015).

    Article  CAS  Google Scholar 

  30. R. Ghiasi, S. Abdolmohammadi, and S. Moslemizadeh, J. Chin. Chem. Soc. 62, 898 (2015).

    Article  CAS  Google Scholar 

  31. A. Peikari, R. Ghiasi, and H. Pasdar, Russ. J. Phys. Chem. A 89, 250 (2015).

    Article  CAS  Google Scholar 

  32. M. Z. Fashami and R. Ghiasi, J. Struct. Chem. 56, 1474 (2015).

    Article  CAS  Google Scholar 

  33. H. Pasdar and R. Ghiasi, Main Group Chem. 8, 143 (2009).

    Article  CAS  Google Scholar 

  34. A. N. Egorochkin, O. V. Kuznetsova, N. M. Khamaletdinova, and L. G. Domratcheva-Lvova, Inorg. Chim. Acta 471, 148 (2018).

    Article  CAS  Google Scholar 

  35. H. Anane, S. E. Houssame, A. E. Guerraze, A. Guermoune, A. Boutalib, A. Jarid, I. Nebot-Gil, and F. Tomás, Cent. Eur. J. Chem. 6, 400 (2008).

    CAS  Google Scholar 

  36. D. M. Denning and D. E. Falvey, J. Org. Chem. 82, 1552 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. A. Zamani, R. Ghiasi, M. S. Sadjadi, and M. Yousefi, Russ. J. Phys. Chem. A 93, 880 (2019).

    Article  Google Scholar 

  38. M. Rahimi, H. Chermette, S. Jamehbozorgi, R. Ghiasi, and M. P. Kalhor, Russ. J. Phys. Chem. A 93, 1747 (2019).

    Article  Google Scholar 

  39. S. Fereidoni, R. Ghiasi, H. Pasdar, and B. Mohtat, J. Struct. Chem. 60, 1743 (2019).

    Article  CAS  Google Scholar 

  40. A. Zamani, R. Ghiasi, M. S. Sadjadi, and M. Yousefi, Russ. J. Inorg. Chem. 63, 906 (2018).

    Article  CAS  Google Scholar 

  41. L. P. Hammett, J. Am. Chem. Soc. 59, 96 (1937).

    Article  CAS  Google Scholar 

  42. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09 (Gaussian, Inc., Wallingford, CT, 2009).

    Google Scholar 

  43. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).

    Article  CAS  Google Scholar 

  44. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).

    Article  CAS  Google Scholar 

  45. L. A. Curtiss, M. P. McGrath, J.-P. Blandeau, N. E. Davis, R. C. Binning, and J. L. Radom, J. Chem. Phys. 103, 6104 (1995).

    CAS  Google Scholar 

  46. J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988).

    Article  CAS  Google Scholar 

  48. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  CAS  Google Scholar 

  49. T. Lu and F. Chen, J. Mol. Graph. Model. 38, 314 (2012).

    Article  CAS  Google Scholar 

  50. S. Liua, J. Chem. Phys. 126, 244103 (2007).

    Article  CAS  Google Scholar 

  51. K. Wolinski, J. F. Hinton, and P. Pulay, J. Am. Chem. Soc 112, 8251 (1990).

    Article  CAS  Google Scholar 

  52. D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys. 10, 5207 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. I. Cukrowski, J. H. d. Lange, and M. Mitoraj, J. Phys. Chem. A 118, 623 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. R. F. W. Bader, T. S. Slee, D. Cremer, and E. Kraka, J. Am. Chem. Soc. 105, 5069 (1983).

    Article  Google Scholar 

  55. N. J. M. Amezaga, S. C. Pamies, N. M. Peruchena, and G. L. Sosa, J. Phys. Chem. A 114, 552 (2010).

    Article  PubMed  CAS  Google Scholar 

  56. B. Niepötter, R. Herbst-Irmer, D. Kratzert, P. P. Samuel, K. C. Mondal, H. W. R. P. Jerabek, G. Frenking, and D. Stalke, Angew. Chem., Int. Ed. 53, 2766 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghiasi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin Rezaei, Ghiasi, R. & Marjani, A. Exploring the Substituent Еffect on the Structure and Еlectronic Рroperties of Si2(para-C6H4X)2 Мolecules. Russ. J. Phys. Chem. 94, 2760–2769 (2020). https://doi.org/10.1134/S0036024420130208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420130208

Keywords:

Navigation