Log in

Quantum chemical study on influence of the substitution effect on the structural and electronic properties and intramolecular hydrogen bonding of 2-nitrophenyl hydrosulfide in ground and electronic excited state

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A density functional theory (DFT)-based quantum chemical computational study has been carried out to characterize the intramolecular hydrogen bonding (IMHB) interaction in 2-nitrophenyl hydrosulfide. This compound and its 24 derivatives are optimized by B3LYP method using 6-311++G** basis set in the gas phase and the water solution. The following substituents have been taken into consideration: F, Cl, Br, C2H5, CH3, CF3, NHCOCH3, NO2, OH, OCH3, SH, CH2F, CH2Cl, CH2Br, CH2OH, SH, SCH3, SCF3, SCOCH3, CH2CF3, CH2OCH3, CHO, COCH3, and OCHF2. The IMHB interaction has been explored by calculation of electron density ρ(r) and Laplacian ∇2 ρ(r) at the bond critical point using atoms-in-molecule (AIM) theory. The electron density (ρ) and Laplacian (∇2 ρ) properties, estimated by AIM calculations, indicate that H6···O1 bond possesses low ρ and positive ∇2 ρ values which are in agreement with electrostatic character of the HBs, whereas S5–H6 bond has covalent character (∇2 ρ < 0). The natural bond orbital analysis is applied to get a more precise insight into the nature of such H6···O1 interactions. Vibrational frequencies, several well-established indices of aromaticity, and physical properties such as dipole moment, chemical potential, and chemical hardness of these compounds have been systematically explored. Also, the excited-state properties of intramolecular hydrogen bonding in these systems have been investigated theoretically using the time-dependent DFT method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baker DH (1986) Prog Food Nutr Sci 10:133–178

    CAS  Google Scholar 

  2. Allison LA, Keddington J, Shoup RE (1983) J Liquid Chromatogr 6:1785–1798

    Article  CAS  Google Scholar 

  3. Yamashita G, Rabenstein D (1989) J Chromatogr 491:341–354

    Article  CAS  Google Scholar 

  4. Sun Y, Smith DL, Shoup RE (1991) Anal Biochem 197:69–76

    Article  CAS  Google Scholar 

  5. Perrett D, Drury PL (1982) J Liquid Chromatogr 5:97–110

    Article  CAS  Google Scholar 

  6. Cappiello M, Vilardo PG, Micheli V, Jacomelli G, Banditelli S, Leverenz V, Giblin FJ, del Corso A, Mura U (2000) Exp Eye Res 70:795–803

    Article  CAS  Google Scholar 

  7. Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L II, Allara DL, Tour JM, Weiss PS (1996) Science 271:1705–1707

    Article  CAS  Google Scholar 

  8. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr, T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham M A, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) (Gaussian 03, Revision C.02 (or D.01), Gaussian, Inc., Pittsburgh PA

  9. Tomasi J, Cammi R, Mennucci B, Cappelli C, Corni S (2002) Phys Chem Chem Phys 4:5697–5712

    Article  CAS  Google Scholar 

  10. Espinosa E, Molins E, Lectome C (1998) Chem Phys Lett 2851:70

    Google Scholar 

  11. Espionsa E, Souhassou M, Lachekar H, Lecomte C (1999) Acta Crystallogr B 55:563

    Article  Google Scholar 

  12. Gonzales L, Mo O, Yanes M (1997) J Phys Chem A 101:9710

    Article  Google Scholar 

  13. Bader RFW (1990) Atoms in Molecules—A Quantum Theory. Clarendon Press, Oxford, p 12

    Google Scholar 

  14. Biegler-Konig FW, Bader RFW, Tang YH, Tal Y (1982) J Comput Chem 3:317

    Article  Google Scholar 

  15. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1992) NBO, Version 3.1, Gaussian, Inc., Pittsburgh

  16. Baaden M, Granger P, Strich A (2000) Mol Phys 98:329

  17. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  18. Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PvR (2005) Chem Rev 105:3842

    Article  CAS  Google Scholar 

  19. Schleyer PVR, Manoharan M, Wang Z-X, Kiran B, Jiao H, Puchta R, Hommes NJRVE (2001) Org Lett 3:2465

    Article  CAS  Google Scholar 

  20. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996) J Am Chem Soc 118:6317

    Article  CAS  Google Scholar 

  21. Krygowski TM, Cyranski MK (1996) Tetrahedron 52:1713

    Article  CAS  Google Scholar 

  22. Krygowski TM, Cyranski MK (1996) Tetrahedron 52:10255–10264

    Article  CAS  Google Scholar 

  23. Andrzejak M, Kubisiak P, Zborowski KK (2013) Struct Chem 24:1171–1184

    Article  CAS  Google Scholar 

  24. Poater J, Fradera X, Duran M, Solà M (2003) Chem Eur J 9:400

    Article  CAS  Google Scholar 

  25. Bultinck P, Ponec R, Van Damme S (2005) J Phys Org Chem 18:706

    Article  CAS  Google Scholar 

  26. Matito E, Duran M, Sola` M (2005) J Chem Phys 125:59901

    Article  Google Scholar 

  27. Matito E, Duran M, Solà M (2006) J Chem Phys 125:059901

    Article  Google Scholar 

  28. Parr RG, Pearson RGJ (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  29. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  30. Iczkowski RP, Margrave JL (1961) J Am Chem Soc 83:3547

    Article  CAS  Google Scholar 

  31. Pearson RG (1985) Proc Natl Acad Sci USA 82:6723–6726

    Article  Google Scholar 

  32. Pearson RG (1985) J Am Chem Soc 107:6801–6806

    Article  CAS  Google Scholar 

  33. Parr RG, Chattaraj PK (1991) J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  34. Espinosa E, Molins E (2000) J Chem Phys 113:5686–5694

    Article  CAS  Google Scholar 

  35. Bader RFW (1990) Atom in Molecules: A Quantum Theory. International Series of Monographs in Chemistry. Oxford University Press, Oxford

    Google Scholar 

  36. Bader RFW (1998) J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  37. Raissi H, Jalbout AF, Nasseri MA, Yoosefian M, Ghassi H, Hameed A (2008) Int J Quant Chem 108:1444–1451

    Article  CAS  Google Scholar 

  38. Popelier P (2000) Atoms in Molecules. An Introduction. Prentice-Hall pearson Education Limited, Englewood Cliffs

    Google Scholar 

  39. Palusiak M, Krygowski TM (2007) Chem Eur J 13:7996

    Article  CAS  Google Scholar 

  40. AIM2000 designed by Friedrich Biegler-Ko¨nig, University of Applied Sciences, Bielefeld, Germany

  41. Alkorta I, Rozas I, Elguero J (1998) Ber Bunsen Ges Phys Chem 102:429–435

    Article  CAS  Google Scholar 

  42. Grabowski SJ (2001) Chem Phys Lett 338:361–366

    Article  CAS  Google Scholar 

  43. Glendening DE, Reed AE, Carpenter JE, Weinhold F, NBO, Version 3.1

  44. Paul BK, Mahanta S, Singh RB, Guchhait N (2010) J Phys Chem A 114:2618–2627

    Article  CAS  Google Scholar 

  45. Gilli G, Gilli P (2000) J Mol Struct 552:1

    Article  CAS  Google Scholar 

  46. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023

    Article  CAS  Google Scholar 

  47. Hansch C, Leo A, Taft RW (1991) Chem Rev 97:165

    Article  Google Scholar 

  48. Miertus S, Scrocco E, Tomasi J (1981) J Chem Phys 55:117

    CAS  Google Scholar 

  49. Onsager L (1936) J Am Chem Soc 58:1486–1493

    Article  CAS  Google Scholar 

  50. Pearson RG (2001) Hard and Soft Acids and Bases. Dowden (Hutchison & Ross), Stroudsburg

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadiseh Heydari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heydari, H., Raissi, H. & Mollania, F. Quantum chemical study on influence of the substitution effect on the structural and electronic properties and intramolecular hydrogen bonding of 2-nitrophenyl hydrosulfide in ground and electronic excited state. Struct Chem 26, 971–987 (2015). https://doi.org/10.1007/s11224-014-0541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0541-0

Keywords

Navigation