Log in

Charge Transfer Complexes of 9H-Fluoren-9-One Derivatives with 9-Methyl-9H-Carbazole: Quantum Chemical Simulation, Single Crystal X-Ray Diffraction Analysis

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Based on DFT quantum chemical calculations, data on the structures and properties of charge transfer complexes of 9H-fluoren-9-one derivatives with с 9-methyl-9H-carbazole are obtained. Formation energies of the complexes, average distances between donor and acceptor planes, donor-to-acceptor chargeа transfer values are calculated. Crystal and molecular structures of the 2,4,7-trinitro-9H-fluoren-9-one complex with 9-methyl-9H-carbazole (C13H5N3O7·C13H11N) are determined by the single crystal X-ray diffraction analysis. Donor and acceptor molecules form mixed stacks {–DADA–} in the crystalline complex where the average interplanar distance DA is 3.30 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. J. Ferraris, D. O. Cowan, V. Walatka, and J. H. Perlstein. Electron transfer in a new highly conducting donor-acceptor complex. J. Am. Chem. Soc., 1973, 95, 948/949. https://doi.org/10.1021/ja00784a066

    Article  CAS  Google Scholar 

  2. L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. F. Garito, and A. J. Heege. Superconducting fluctuations and the peierls instability in an organic solid. Solid State Commun., 1973, 12, 1125-1132. https://doi.org/10.1016/0038-1098(73)90127-0

    Article  CAS  Google Scholar 

  3. J. Wosnitza. Quasi-two-dimensional organic superconductors. J. Low Temp. Phys., 2007, 146, 641-667. https://doi.org/10.1007/s10909-006-9282-9

    Article  CAS  Google Scholar 

  4. Yu. V. Korshak, T. V. Medvedeva, A. A. Ovchinnikov, and V. N. Spector. Organic polymer ferromagnet. Nature, 1987, 326, 370-372. https://doi.org/10.1038/326370a0

    Article  CAS  Google Scholar 

  5. E. Menard, V. Podzorov, S.-H. Hur, A. Gaur, M. E. Gershenson, and J. A. Rogers. High-performance n- and p-type single-crystal organic transistors with free-space gate dielectrics. Adv. Mater., 2004, 16, 2097-2101. https://doi.org/10.1002/adma.200401017

    Article  CAS  Google Scholar 

  6. B. Mukherjee and M. Mukherjee. High performance organic thin film transistors with solution processed TTF-TCNQ charge transfer salt as electrodes. Langmuir, 2011, 27, 11246-11250. https://doi.org/10.1021/la201780c

    Article  CAS  PubMed  Google Scholar 

  7. R. Otero, J. M. Gallego, A. L. Vasquez de Parga, N. Martin, and R. Miranda. Molecular self-assembly at solid surfaces. Adv. Mater., 2011, 23, 5148-5176. https://doi.org/10.1002/adma.201102022

    Article  CAS  PubMed  Google Scholar 

  8. A. Suzuki, T. Ohtsuki, T. Oku, and T. Akiyama. Fabrication and characterization of tetracyanoquinodimethane/phthalocyanine solar cells. Mater. Sci. Eng. B., 2012, 177, 877-881. https://doi.org/10.1016/j.mseb.2012.03.052

    Article  CAS  Google Scholar 

  9. M. Shiraishi and T. Ikoma. Molecular spintronics. Physica E, 2011, 43, 1295-1317. https://doi.org/10.1016/j.physe.2011.02.010

    Article  CAS  Google Scholar 

  10. V. A. Starodub and T. N. Starodub. Radical anion salts and charge transfer complexes based on tetracyanoquinodimethane and other strong π-electron acceptors. Russ. Chem. Rev., 2014, 83, 391-438. https://doi.org/10.1070/RC2014v083n05ABEH004299

    Article  Google Scholar 

  11. R. S. Mulliken and W. B. Person. Molecular Complexes. New York: Wiley-Interscience, 1969. https://doi.org/10.1016/0022-2860(71)87071-0

    Article  Google Scholar 

  12. P. Hu, K. Du, F. Wei, H. Jiang, and C. Kloc. Crystal growth, HOMO–LUMO engineering, and charge transfer degree in perylene-FxTCNQ (x = 1, 2, 4) organic charge transfer binary compounds. Cryst. Growth Des., 2016, 16, 3019-3027. https://doi.org/10.1021/acs.cgd.5b01675

    Article  CAS  Google Scholar 

  13. M. Singh and D. Chopra. Diversity in mechanical response in donor–acceptor coupled cocrystal stoichiomorphs based on pyrene and 1,8-dinitroanthraquinone systems. Cryst. Growth Des., 2018, 18, 6670-6680. https://doi.org/10.1021/acs.cgd.8b00918

    Article  CAS  Google Scholar 

  14. B. Averkiev, R. Isaac, E. V. Jucov, V. N. Khrustalev, C. Kloc, L. E. McNeil, and T. V. Timofeeva. Evidence of low-temperature phase transition in tetracene–tetracyanoquinodimethane complex. Cryst. Growth Des., 2018, 18, 4095-4102. https://doi.org/10.1021/acs.cgd.8b00501

    Article  CAS  Google Scholar 

  15. G. Saito and T. Murata. Mixed valency in organic charge transfer complexes. Philos. Trans. R. Soc., A, 2008, 366, 139-150. https://doi.org/10.1098/rsta.2007.2146

    Article  CAS  Google Scholar 

  16. N. Yee, A. Dadvand, E. Hamzehpoor, H. M. Titi, and D. F. Perepichka. Hydrogen bonding versus π-stacking in charge-transfer co-crystals. Cryst. Growth Des. 2021, 21, 2609-2613. https://doi.org/10.1021/acs.cgd.1c00309

    Article  CAS  Google Scholar 

  17. Ch. Browning, J. M. Hudson, E. W. Reinheimer, F.-L. Kuo, R. N. McDougald Jr., H. Rabaâ, H. Pan, J. Bacsa, X. Wang, K. R. Dunbar, N. D. Shepherd, and M. A. Omary. Black absorbers consisting of Pt(bipyridine)(dithiolate) charge transfer complexes in the presence and absence of nitrofluorenone acceptors. J. Am. Chem. Soc., 2014, 136, 16185-16200. https://doi.org/10.1021/ja506583k

    Article  CAS  PubMed  Google Scholar 

  18. A. A. Bakulin, D. Martyanov, D. Yu. Paraschuk, H. M. P. van Loosdrecht, and M. S. Pshenichnikov. Charge-transfer complexes of conjugated polymers as intermediates in charge photogeneration for organic photovoltaics. Chem. Phys. Lett., 2009, 482, 99-104. https://doi.org/10.1016/j.cplett.2009.09.052

    Article  CAS  Google Scholar 

  19. O. D. Parashchuk, V. V. Bruevich, and D. Yu. Paraschuk. Association function of conjugated polymer charge-transfer complex. Phys. Chem. Chem. Phys., 2010, 12, 6021-6026. https://doi.org/10.1039/b927324g

    Article  CAS  PubMed  Google Scholar 

  20. A. Yu. Sosorev, O. D. Parashchuk, S. A. Zapunidi, G. S. Kashtanov, I. V. Golovnin, S. Kommanaboyina, I. F. Perepichka, and D. Yu. Paraschuk. Threshold-like complexation of conjugated polymers with small molecule acceptors in solution within the neighbor-effect model. Phys. Chem. Chem. Phys., 2016, 18, 4684-4696. https://doi.org/10.1039/C5CP05266A

    Article  CAS  PubMed  Google Scholar 

  21. H. Hoegl, G. Barchietto, and D. Tar. Photosensitization of poly-N-vinyl carbazole. Photochem. Photobiol., 1972, 16, 335-352. https://doi.org/10.1111/j.1751-1097.1972.tb06303.x

    Article  Google Scholar 

  22. I. F. Perepichka, D. D. Mysyk, and N. I. Sokolov. Sensitisation of photoconductivity of poly-N-(2,3-epoxypropyl)carbazole films by TCNQ and fluorene acceptors. Synth. Met., 1999, 101, 9/10. https://doi.org/10.1016/S0379-6779(98)00630-4

    Article  CAS  Google Scholar 

  23. R. V. Linko, M. A. Ryabov, P. V. Strashnov, N. A. Polyanskaya, V. V. Davydov, P. V. Dorovatovskii, and V. N. Khrustalev. Quantum-chemical simulation of the structure of charge-transfer complexes of 9,10-phenanthrenequinone nitro-derivatives with phenanthrene. Crystal and molecular structure of 1:1 complex of 2,4,7-trinitro-9,10-phenanthrenequinone with phenanthrene. Russ. J. Gen. Chem., 2020, 90, 1869-1877. https://doi.org/10.1134/S1070363220100096

    Article  CAS  Google Scholar 

  24. R. Linko, M. Ryabov, P. Strashnov, P. Dorovatovskii, V. Khrustalev, and V. Davydov. Charge transfer complexes of 1,3,6-trinitro-9,10-phenanthrenequinone with polycyclic aromatic compounds. Molecules, 2021, 26, 6391. https://doi.org/10.3390/molecules26216391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R. V. Linko, M. A. Ryabov, P. V. Strashnov, V. V. Davydov, P. V. Dorovatovskii, N. Yu. Chernikova, and V. N. Khrustalev. Quantum-chemical simulation of charge-transfer complexes of 2,4,7-trinitro-9H-fluoren-9-one with donor molecules. Crystal and molecular structure of the 1:1 complex of 2,4,7-trinitro-9H-fluoren-9-one with anthracene. Russ. J. Gen. Chem., 2022, 92, 212-223. https://doi.org/10.1134/S1070363222020104

    Article  CAS  Google Scholar 

  26. V. G. Pavelyev, O. D. Parashchuk, M. Krompiec, T. V. Orekhova, I. F. Perepichka, P. H. M. van Loosdrecht, D. Yu. Paraschuk, and M. S. Pshenichnikov. Charge transfer dynamics in donor–acceptor complexes between a conjugated polymer and fluorene acceptors. J. Phys. Chem. C., 2014, 118, 30291-30301. https://doi.org/10.1021/jp510543c

    Article  CAS  Google Scholar 

  27. Bruker, APEX3. Madison, WI, USA: Bruker AXS, 2018.

  28. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr., 2015, 48, 3-10. https://doi.org/10.1107/S1600576714022985

    Article  CAS  Google Scholar 

  29. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  30. S. F. Boys and F. Bernardi. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys., 1970, 19, 553-566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  31. S. Grimme, S. Ehrlich, and L. Goerigk. Effect of the dam** function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32, 1456-1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  32. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold. NBO 5.G. Madison, WI, USA: Theoretical Chemistry Institute, University of Wisconsin, 2004.

  33. A. A. Granovsky. Firefly, version 8.20, http://classic.chem.msu.su/gran/firefly/index.html.

  34. P. Hu, Sh. Wang, A. Chaturvedi, F. Wei, X. Zhu, X. Zhang, R. Li, Y. Li, H. Jiang, Y. Long, and Ch. Kloc. Impact of C–H⋯X (X = F, N) and π–π interactions on tuning the degree of charge transfer in F6TNAP-based organic binary compound single crystals. Cryst. Growth Des., 2018, 18, 1776-1785. https://doi.org/10.1021/acs.cgd.7b01669

    Article  CAS  Google Scholar 

  35. A. Salmerón-Valverde and S. Bernès. Caractérisation structurale et étude spectroscopique du transfert de charge pour deux phases polymorphes du complexe (TTF)3(TNF)2, avec TTF = tétrathiofulvalène et TNF = 2,4,7-trinitro-9-fluorénone. C. R. Chim., 2005, 8, 1017-1023. https://doi.org/10.1016/j.crci.2004.11.025

    Article  CAS  Google Scholar 

  36. E. W. Reinheimer, J. R. Galán-Mascarós, and K. R. Dunbar. Synthesis and structure of charge transfer salts of tetrathiafulvalene (TTF) and tetramethyl-TTF with 2,4,7-trinitro and 2,4,5,7-tetranitro-9-fluorenone. Synth. Met., 2009, 159, 45-51. https://doi.org/10.1016/j.synthmet.2008.07.017

    Article  CAS  Google Scholar 

  37. W. Jiang, X. Ma, D. Liu, G. Zhao, W. Tian, and Y. Sun. Modulation of charge transfer and π–π interaction toward tunable fluorescence emission in binary cocrystals composed of carbazole derivatives and 1,2,4,5-tetracyanobenzene. Dyes Pigm., 2021, 193, 109519. https://doi.org/10.1016/j.dyepig.2021.109519

    Article  CAS  Google Scholar 

  38. L. Kh. Minacheva, V. S. Sergienko, S. B. Strashnova, O. V. Avramenko, O. V. Koval′chukova, O. A. Egorova, and B. E. Zaitsev. Crystal structure and spectral characteristics of 2,4,7-trinitro-9-fluorenone. Crystallogr. Rep., 2005, 50, 72-77. https://doi.org/10.1134/1.1857248

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Linko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 8, 114432.https://doi.org/10.26902/JSC_id114432

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linko, R.V., Ryabov, M.A., Davydov, V.V. et al. Charge Transfer Complexes of 9H-Fluoren-9-One Derivatives with 9-Methyl-9H-Carbazole: Quantum Chemical Simulation, Single Crystal X-Ray Diffraction Analysis. J Struct Chem 64, 1448–1460 (2023). https://doi.org/10.1134/S0022476623080097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623080097

Keywords

Navigation