Log in

Virtual dipole moment variations through the Proterozoic-Phanerozoic eons

  • Marine Geology
  • Published:
Oceanology Aims and scope

Abstract

The international bank of virtual dipole moment (VDM) data, combined with materials from recent publications (3384 values in total), served as a basis for the analysis of the VDM’s distribution through the Proterozoic and Phanerozoic eons (0–2.6 Ga). The VDM distribution obtained by the method of a moving average exhibits a positive linear trend from 3.7 × 1022 Am2 2.6 Ga ago to 5.8 × 1022 Am2 at present. Against the background of this linear growth, fluctuations with a periodicity of approximately 390 Ma are defined. The obtained data substantially specify the available data on the behavior of the magnetic field during the Proterozoic and Phanerozoic eons and should be taken into consideration for modeling the physical processes in the development of the Earth in the geological past and predicting its ecological and energetic evolution in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Logachev and V. P. Zakharov, Magnetosurvay (Nedra, Moscow, 1979).

    Google Scholar 

  2. E. Thellier and O. Thellier, “On Intensity of Earth Magnetic Field in the Historical and Geological Past,” Izvestiya AN SSSR, No. 9, 1296–1331 (1959).

  3. V. E. Khain and E. N. Khalilov, Circulation of Geodynamic Processes: Its Possible Nature (Nauchnyi Mir, Moscow, 2009) [in Russian].

    Google Scholar 

  4. A. A. Shreider, Geomagnetic Studies of the Indian Ocean (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  5. A. A. Shreider, Al. A. Shreider, P. Varga, and K. Denis, “Alteration of the Geomagnetic Dipole Within an Interval of Chrones C1-M43,” Okeanologiya, 45, No. 5, 785–789 (2005).

    Google Scholar 

  6. A. A. Shreider, Al. A. Shreider, P. Varga, and K. Denis, “Alteration of Geomagnetic Dipole Over Last 400 Millions Years,” Okeanologiya, 48, No, 2, 271–275 (2008).

    Google Scholar 

  7. A. A. Shreider, Al. A. Shreider, P. Varga, and K. Denis, “Variability of Virtual Dipole Moment in Phanerozoic,” Okeanologiya, 51, No. 3, 537–541 (2011).

    Google Scholar 

  8. V. P. Shcherbakov, G. M. Solodovnikov, and N. K. Sycheva, “Variability of Geomagnetic Dipole Over Last 400 Millions of Years (Volcano Rocks),” Fizika Zemli, No. 2, 26–33 (2002).

  9. V. P. Shcherbakov, N. K. Sycheva, and V. V. Shcherbakova, “Evolution of Earth Magnetic Moment in Geological Past,” Geophysicheskie Issledovaniya, 9, No. 2, 7–24 (2008).

    Google Scholar 

  10. L. Alva-Valdivia, A. Goguitchaichvili, and J. Urrutia-Fucugauchi, “Further Constraints for the Plio-Pleistocene Geomagnetic Field Strength: New Results from the Los Òuxtlas Volcanic Field (Mexico),” Earth Planet. Space, 53, 873–881 (2001).

    Google Scholar 

  11. A. Biggin, A. McCormik, and A. Roberts, “Paleointensity Database Updated and Upgraded,” EOS, 91, No. 2, 15 (2010).

    Article  Google Scholar 

  12. A. Biggin, G. Stirk, and C. Langeris, “The Intensity of the Geomagnetic Field in the Late Archaean: New Measurements and an Analysis of the Updated IAGA Paleointensity Database,” Earth Planets Space, 61, 9–22 (2009).

    Google Scholar 

  13. H. Bohnel, C. Morales, L. Caballero, et al., “Variation of Rock-Magnetic Parameters and Paleoinetsnities Over a Single Holocene Lava Flow,” J. Geomag. Geoelectr., 49, 523–542 (1997).

    Article  Google Scholar 

  14. Borokpint. http://www.brk.adm.yar.ru/palmag/index/html.

  15. S. Coe, “The Determination of Paleointensities of the Erath Magnetic Field with Emphasis on Mechanisms Which Could Cause Non Ideal Behavior in Thellier Method,” J. Geomag. Geoelectr., 19, 157–179 (1967).

    Article  Google Scholar 

  16. C. Denis, A. A. Schreider, P. Varga, J. Zavoti, “Despinning of the Earth Rotation in the Geological Past and Geomagnetic Paleointensities,” J. of Geodynamics, 34, 667–685 (2002).

    Article  Google Scholar 

  17. C. Denis, K. Rybicki, A. A. Schreider, et al., “Length of the Day and Evolution of the Earth’s Core in the Geological Past,” Astron. Nachr., 332, 24–35 (2011).

    Article  Google Scholar 

  18. A. Goguitchaichvili, P. Camps, and J. Urrutia-Fucugauchi, “On the Features of the Geodinamo Following Reversals and Excursions: By Absolute Geomagnetic Intensity Data,” Phys. Earth Planet. Int., 124, 81–93 (2000).

    Article  Google Scholar 

  19. F. Gradstein, J. Ogg, A. Smith, et al., A Geologic Time Scale 2004 (Cambridge, 2006).

  20. IAGA Paleointensity Database. http://www.isteem.univmontp2.fr/PERSO/perrin/

  21. J. Jacobs, “The Evolution of the Earth Core and Magnetic Field,” Phys. Earth Planet. Int., 3, 513–518 (1970).

    Article  Google Scholar 

  22. M. Juarez and L. Tauxe, “The Intensity of Time Averaged Geomagnetic Field: The Last 5 My,” Earth Planet. Sci. Lett., 175, 169–180 (2000).

    Article  Google Scholar 

  23. M. Macouin, J. Valet, and J. Besse, “Long-Term Evolution of the Geomagnetic Dipole Moment,” Phys. Earth Planet. Int., 147, 239–246 (2004).

    Article  Google Scholar 

  24. M. Macouin, J. Valet, J. Besse, et al., “Low Paleointensities Recorded in 1 to 2.4 Ga Proterozoic Dykes, Superior Province, Canada,” Earth and Planet. Sci. Lett., 213, 79–95 (2003).

    Article  Google Scholar 

  25. J. Morales, A. Goguitchaichvili, and J. Urrutia-Fucugauchi, “A Rock-Magnetic and Paleointensity Study of Some Mexican Volcanic Lava Flows during the Latest Pleistocene to the Holocene,” Earth Planet. Space, 53, 693–902 (2001).

    Google Scholar 

  26. Y. Pan, M. Hill, R. Zhu, and J. Shaw, “Future Evidence for Low Intensity of the Geomagnetic Field During the Early Cretaceous Time: Using the Modified Shaw Method and Microwave Technique,” Geophys. J. Int., 157, 553–564 (2004).

    Article  Google Scholar 

  27. M. Perrin and E. Schnepp, “IAGA Paleointensity Database: Distribution and Quality of the Data Set,” Phys. Earth and Planet. Inter., 147, 255–267 (2004).

    Article  Google Scholar 

  28. G. Plenier, P. Camps, R. Coe, and M. Perrin, “Absolute Paleointensity of Oligocene (28–30 Ma) Lava Flows from the Kergelen Archipelago (Southern Indian Ocean),” Geophys. J. Int., 154, 877–890 (2003).

    Article  Google Scholar 

  29. P. Selkin and L. Tauxe, “Long-Term Variations in Paleointensity,” Phil. Trans. R. Soc. Lond., 358A, 1065–1088 (2000).

    Article  Google Scholar 

  30. J. Shaw, “A New Method of Determining the Magnitude of Paleomagnetic Field. Application to Five Historic Lavas and Five Archeological Samples,” Geophys. J. R. Astron. Soc., 39, 133–141 (1974).

    Article  Google Scholar 

  31. P. Smith, “The Intensity of the Tertiary Geomagnetic Field,” Geophys. J. R. Astron. Soc., 12, 239–258 (1967).

    Article  Google Scholar 

  32. A. Taki, H. Shibuya, A. Yoshihara, and Y. Hamano, “Paleointensity Measurements of Piroclastic Flow Deposits Co-Born with Widespread Tephras in Kyushu Island, Japan,” Physics of the Earth and Planet. Int., 133, 159–179 (2002).

    Article  Google Scholar 

  33. H. Tanaka and M. Kono, “Paleointensities from a Cretaceous Basalt Platform in Inner Mongolia, Northeastern China,” Earth and Planet. Sci. Lett., 133, 147–157 (2002).

    Article  Google Scholar 

  34. J. Tarduno and R. Cotterell, “Dipole Strength and Variation of the Time-Averaged Reversing and Nonreversing Geodynamo Based on Thellier Analyses of Single Plagioclase Crystals,” J. Geophys. Res., 110,B11101, 10 (2005).

    Google Scholar 

  35. A. Tarduno, R. Cotterell, and A. Smirnov, “The Paleomagnetism of Single Silicate Crystals: Recording Geomagnetic Field Strange during Mixed Polarity Intervals, Superchrons, and Inner Core Growth,” Rev. Geophys., 41, 1–31 (2006).

    Google Scholar 

  36. E. Tema, A. Goguitchaichviili, and P. Camps, “Archeointensiti Determinations from Italy: New Data and the Earth Magnetic Field Strength Variations over the Past Three Millennia,” Geophys. J. Int., 180, 596–608 (2010).

    Article  Google Scholar 

  37. J. Valet, “Time Variations in Geomagnetic Intensity,” Reviews in Geophysics, 41, No. 1, 4.1–4.44 (2003).

    Article  Google Scholar 

  38. P. Varga, Z. Bus, B. Süle, and A. Schreider, “Variation in the Rotation Rate of the Earth and the Geomagnetic Field,” Acta Geodaetica et Geophysica Hungarica, 42, No. 4, 433–448 (2007).

    Article  Google Scholar 

  39. P. Varga, Z. Bus, B. Süle, et al., “Correspondence of EOP and Geomagnetic Field,” Systems de Reference Tems-Espace, UMR8630/CNRS, 226–227 (2008).

  40. P. Varga, B. Sule, and A. A. Schreider, “Short-Term (Dedicadal) and Long-Term (over Geological History) Correspondence of Length of Day and Geomagnetic Field,” Geophysical Research Abstracts, 8, 02230 (2006). ref: 1607-7962/gra/EGU06-A-02230.

    Google Scholar 

  41. P. Varga, J. Zavoti, C. Denis, and A. A. Schreider, “Complex Interpretation of the Earth Despinning History,” in Vistas for Geodesy in the New Millennium (Springer-Verlag, Berlin, 2002) pp. 417–422.

    Google Scholar 

  42. R. Zhu, K. Hoffman, S. Nomande, et al., “Geomagnetic Paleointensity and Direct Age Determination of the ISEA (M0r) Chron,” Earth and Planet. Sci. Lett., 217, 285–295 (2004a).

    Article  Google Scholar 

  43. R. Zhu, K. Hoffman, Y. Pan, et al., “Evidence for Weak Geomagnetic Field Intensity Prior to the Cretaceous Normal Superchron,” Earth and Planet. Sci. Lett., 136, 187–199 (2003).

    Article  Google Scholar 

  44. R. Zhu, Y. Pan, J. Shaw, et al., “Geomagnetic Paleointensity Just Prior to the Cretaceous Normal Superchron,” Phys. Earth and Planet. Int., 128, 207–222 (2001).

    Article  Google Scholar 

  45. R. Zhu, C. Lob, R. Rui** Shi, G. Shi, et al., “Palaeointensities Determined from the Middle Cretaceous Basalt in Liaoning Province, Northeastern China,” Phys. Earth and Planet. Int., 142, 49–59 (2004b).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Schreider.

Additional information

Original Russian Text © A.A. Schreider, Al.A. Schreider, P. Varga, C. Denis, 2012, published in Okeanologiya, 2012, Vol. 52, No. 4, pp. 582–587.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreider, A.A., Schreider, A.A., Varga, P. et al. Virtual dipole moment variations through the Proterozoic-Phanerozoic eons. Oceanology 52, 545–549 (2012). https://doi.org/10.1134/S0001437012040108

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437012040108

Keywords

Navigation