Log in

Changes in the Virtual Dipole Moment of the Earth’s Magnetic Field in the Phanerozoic

  • Marine Geology
  • Published:
Oceanology Aims and scope

Abstract

Data on the virtual dipole moment (VDP) is distributed nonuniformly with time, which significantly complicates qualitative and quantitative analysis of its evolution. In addition to the moving average method and median values, for the first time, a technique is presented for a quasi-uniform presentation of data (interpolation method), as well as results of calculating the evolution of the VDM by this method for the Phanerozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Mosteller and J. W. Tukey, Data Analysis and Regression (Wiley, New York, 1977; Finansy i Statistika, Moscow, 1982).

    Google Scholar 

  2. S. L. Shalimov, “The causes of superchrons of the geomagnetic field,” Geofiz. Issled., No. 6, 59–70 (2006).

    Google Scholar 

  3. A. A. Schreider, “Magnetism of the ocean crust and linear paleomagnetic anomalies,” Fiz. Zemli, No. 6, 59–70 (1992).

    Google Scholar 

  4. A. A. Schreider, A. A. Ignatova, Al. A. Schreider, A. E. Sajneva, P. Varga, and C. Denis, “Evolution of calculations of the virtual dipole moment of the Earth for reconstructing the oceanic inversion magnetic layer’s parameters,” Oceanology (Engl. Transl.) 56, 428–434 (2016).

    Google Scholar 

  5. A. A. Schreider, Al. A. Schreider, P. Varga, and C. Denis, “Variations in the magnitude of the geomagnetic dipole in the interval of chronos C1-M43,” Oceanology (Engl. Transl.) 45, 745–749 (2005).

    Google Scholar 

  6. A. A. Schreider, Al. A. Schreider, P. Varga, and C. Denis, “Variations of the geomagnetic dipole magnitude over the past 400 My,” Oceanology (Engl. Transl.) 48, 250–254 (2008).

    Google Scholar 

  7. A. A. Schreider, Al. A. Schreider, P. Varga, and C. Denis, “Variations of the Earth’s magnetic field in the Phanerozoic,” Oceanology (Engl. Transl.) 51 (3), 506–510 (2011).

    Google Scholar 

  8. V. P. Shcherbakov and N. K. Sycheva, “On the variation in the geomagnetic dipole over the geological history of the Earth,” Izv. Phys. Solid Earth 42 (3), 201–206 (2006).

    Article  Google Scholar 

  9. L. Alva-Valdivia, A. Goguitchaichvili, and J. Urrutia- Fucugauchi, “Further constraints for the Plio- Pleistocene geomagnetic field strength: new results from the los Tuxtlas volcanic field (Mexico),” Earth Planet. Space 53, 873–881 (2001).

    Article  Google Scholar 

  10. A. Biggin, A. McCormik, and A. Roberts, “Paleointensity database updated and upgraded,” EOS 91 (2), 15 (2010).

    Article  Google Scholar 

  11. A. J. Biggin, G. Stirk, and C. Langeris, “The intensity of the geomagnetic field in the late Archaean: new measurements and an analysis of the updated IAGA paleointensity database,” Earth Planet. Space 61, 9–22 (2009).

    Article  Google Scholar 

  12. A. J. Biggin and D. N. Thomas, “Analysis of long-tern variations in the geomagnetic poloidal field intensity and evaluation of their relationship with global geodynamics,” Geophys. J. Int. 152, 392–415 (2003).

    Article  Google Scholar 

  13. Borokpint. http://www.brk.adm.yar.ru/palmag/index/ html.2012.

  14. F. Donadini, “Features of the Geomagnetic field during the Holocene and Proterozoic,” Rep. Ser. Geophys. 58, 113–128 (2007).

    Google Scholar 

  15. F. Gradstein, J. Ogg, M. Schmitz, and G. Ogg, The Geologic Timescale 2012 (Elsevier, Amsterdam, 2012).

    Google Scholar 

  16. IAGA paleointensity database. http://www.isteem.univmontp2. fr/PERSO/perrin/2015.

  17. M. Juarez and L. Tauxe, “The intensity of time averaged geomagnetic field: the last 5 My,” Earth Planet. Sci. Lett. 175, 169–180 (2000).

    Article  Google Scholar 

  18. M. Macouin, J. Valet, J. Besse, et al., “Low paleointensities recorded in 1 to 2.4 Ga Proterozoic dykes, Superior province, Canada,” Earth Planet. Sci. Lett. 213, 79–95 (2003).

    Article  Google Scholar 

  19. L. Morley and A. Larochelle, “Paleomagnetism as a mean of dating geological events,” R. Soc. Can. Spec. Publ. 8, 39–50 (1964).

    Google Scholar 

  20. Y. Pan, M. Hill, R. Zhu, and J. Shaw, “Future evidence for low intensity of the geomagnetic field during the early Cretaceous time: using the modified Shaw method and microwave technique,” Geophys. J. Int. 157, 553–564 (2004).

    Article  Google Scholar 

  21. J. Salminen, F. Donadini, L. J. Pesonen, et al., “Paleomagnetism and petrophysics of the Janisjarvi impact structure, Russian Karelia,” Meteor. Planet. Sci. 41 (12), 1853–1870 (2006).

    Article  Google Scholar 

  22. P. Selkin, J. Gee, W. Meurer, and S. Hemming, “Paleointensity record from the 2.7 Ga Stillwater complex, Montana,” Geochem., Geophys., Geosci. 9 (12), (2008).

    Google Scholar 

  23. I. Sumita, T. Hatakeyama, A. Yoshihara, and Y. Hamano, “Paleomagnetism of Late Archean rocks of Hamersley basin, Western Australia and the paleointensity at early Proterozoic,” Phys. Earth Planet. Int. 128, 223–241 (2001).

    Article  Google Scholar 

  24. A. Tarduno, R. Cotterell, and A. Smirnov, “The paleomagnetism of single silicate crustals: recording geomagnetic field strange during mixed polarity intervals, superchrons, and inner core growth,” Rev. Geophys. 41 (RG1002), 1–31 (2006).

    Google Scholar 

  25. D. N. Thomas and A. J. Biggin, “Does the Mesozoic dipole low really exist?” EOS 84 (11), 111–113 (2003).

    Article  Google Scholar 

  26. F. Vine and D. Matthews, “Magnetic anomalies over oceanic ridges,” Nature 199, 947–949 (1963).

    Article  Google Scholar 

  27. D. Wang, R. van der Voo, and D. Peacor, “Why is the permanent magnetic intensity of Cretaceous MORB so much higher than that of mid to late Cenozoic MORB?” Geosphere 1, 138–146 (2005).

    Article  Google Scholar 

  28. Y. Yamamoto and H. Tsunakawa, “Geomagnetic field intensity during the last 5 Myr: LTD-DHT Shaw palaeointensities from volcanic rocks of the Society Islands, French Polynesia,” Geophys. J. Int. 162, 79–114 (2005).

    Article  Google Scholar 

  29. R. Zhu, K. Hoffman, Y. Pan, S. Li, et al., “Evidence for weak geomagnetic field intensity prior to the Cretaceous normal superchron,” Earth Planet. Sci. Lett. 136, 187–199 (2003).

    Article  Google Scholar 

  30. R. Zhu, C. Lo, R. Rui** Shi, G. Shi, et al., “Palaeointensities determined from the middle Cretaceous basalt in Liaoning Province, northeastern China,” Phys. Earth Planet. Int. 142, 49–59 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Schreider.

Additional information

Original Russian Text © A.A. Schreider, A.A. Ignatova, Al.A. Schreider, A.E. Sazhneva, P.Yu. Pugin, 2017, published in Okeanologiya, 2017, Vol. 57, No. 6, pp. 960–966.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreider, A.A., Ignatova, A.A., Schreider, A.A. et al. Changes in the Virtual Dipole Moment of the Earth’s Magnetic Field in the Phanerozoic. Oceanology 57, 864–869 (2017). https://doi.org/10.1134/S0001437017050162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437017050162

Navigation