Log in

Improving crime count forecasts in the city of Rio de Janeiro via reconciliation

  • Original Article
  • Published:
Security Journal Aims and scope Submit manuscript

Abstract

Crime prediction based on reliable data and sound statistical methodologies can provide valuable input for tactical deployment of police resources in so-called crime hot spots and effective planning of police operations. In Rio de Janeiro, the Public Safety Secretariat uses criminal activity forecasts to detect crime patterns and evaluate police performance. This paper evaluates the impact of reconciliation on the forecasts of 271 series of registered criminal occurrences in the city of Rio de Janeiro on a monthly basis from January 2003 to December 2019. We verify that reconciliation improves crime count forecasts, especially on the most disaggregated series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldor-Noiman, Sivan, Lawrence D. Brown, Emily B. Fox, and Robert A. Stine. 2016. Spatio-temporal low count processes with application to violent crime events. Statistica Sinica 26 (4): 1587–1610.

    Google Scholar 

  • Alsadik, Bashar. 2019. Kalman filter. In Adjustment models in 3D geomatics and computational geophysics, vol. 4 of computational geophysics, ed. Bashar Alsadik, 299–326. Amsterdam: Elsevier.

    Google Scholar 

  • Athanasopoulos, George, Rob J. Hyndman, Nikolaos Kourentzes, and Fotios Petropoulos. 2017. Forecasting with temporal hierarchies. European Journal of Operational Research 262 (1): 60–74.

    Article  Google Scholar 

  • Berk, Richard. 2008. Forecasting methods in crime and justice. Annual Review of Law and Social Science 4: 219–238.

    Article  Google Scholar 

  • Brantingham, Paul Jeffrey. 2016. Crime diversity. Criminology 54 (4): 553–586.

    Article  Google Scholar 

  • Brantingham, Paul J., and Patricia L. Brantingham. 1984. Patterns in crime, 1st ed. New York: Macmillan.

    Google Scholar 

  • Bruinsma, Gerben J. N., and Shane D. Johnson. 2018. The Oxford handbook of environmental criminology, 1st ed. New York: Oxford University Press.

    Book  Google Scholar 

  • Caplan, Joel M., Leslie W. Kennedy, and Joel Miller. 2011. Risk terrain modeling: Brokering criminological theory and GIS methods for crime forecasting. Justice Quarterly 28 (2): 360–381.

    Article  Google Scholar 

  • Chainey, Spencer, and Jerry Ratcliffe. 2005. GIS and crime map**, 1st ed. New Jersey: Wiley.

    Book  Google Scholar 

  • Chainey, Spencer, Lisa Tompson, and Sebastian Uhlig. 2008. The utility of hotspot map** for predicting spatial patterns of crime. Security Journal 21: 4–28.

    Article  Google Scholar 

  • Cohen, Jacqueline, Wilpen L. Gorr, and Andreas M. Olligschlaeger. 2007. Leading indicators and spatial interactions: A crime-forecasting model for proactive police deployment. Geographical Analysis 39 (1): 105–127.

    Article  Google Scholar 

  • Corcoran, Jonathan J., Ian D. Wilson, and J. Andrew Ware. 2003. Predicting the geo-temporal variations of crime and disorder. International Journal of Forecasting 19 (4): 623–634.

    Article  Google Scholar 

  • Davis, Robert C. 2012. Selected international best practices in police performance measurement. Technical Report. RAND Corporation.

  • Deadman, Derek. 2003. Forecasting residential burglary. International Journal of Forecasting 19 (4): 567–578.

    Article  Google Scholar 

  • Deadman, Derek, and David Pyle. 1997. Forecasting recorded property crime using a time-series econometric model. The British Journal of Criminology 37 (3): 437–445.

    Article  Google Scholar 

  • Drawve, Grant, Stacy C. Moak, and Emily R. Berthelot. 2016. Predictability of gun crimes: A comparison of hot spot and risk terrain modelling techniques. Policing and Society 26 (3): 312–331.

    Article  Google Scholar 

  • Dunn, D.M., William H. Williams, and T.L. DeChaine. 1976. Aggregate versus subaggregate models in local area forecasting. Journal of American Statistical Association 71 (353): 68–71.

    Article  Google Scholar 

  • Durbin, James. 2000. Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 62 (1): 3–56.

    Article  Google Scholar 

  • Durbin, James, and Siem Jan Koopman. 2012. Time series analysis by state space methods, 2nd ed. New York: Oxford University Press.

    Book  Google Scholar 

  • Ferraz, Claudio, Joana Monteiro, and Bruno Ottoni. 2021. Regaining the monopoly of violence: Evidence from the pacification of Rio de Janeiro’s Favelas. https://joanacmmonteiro.com/pesquisa/

  • Fielding, Nigel, and Martin Innes. 2006. Reassurance policing, community policing and measuring police performance. Policing and Society 16 (2): 127–145.

    Article  Google Scholar 

  • Filstad, Cathrine, and Petter Gottschalk. 2009. Performance evaluation of police oversight agencies. Policing and Society 21 (1): 96–109.

    Article  Google Scholar 

  • Fliedner, Gene. 2001. Hierarchical forecasting: Issues and use guidelines. Industrial Management & Data Systems 101 (1): 5–12.

    Article  Google Scholar 

  • Gerber, Matthew S. 2014. Predicting crime using Twitter and kernel density estimation. Decision Support Systems 61: 115–125.

    Article  Google Scholar 

  • Giménez-Santana, Alejandro, Joel M. Caplan, and Grant Drawve. 2018. Risk terrain modeling and socio-economic stratification: Identifying risky places for violent crime victimization in Bogotá, Colombia. European Journal on Criminal Policy and Research 24: 417–431.

    Article  Google Scholar 

  • Gorr, Wilpen, and Richard Harries. 2003. Introduction to crime forecasting. International Journal of Forecasting 19 (4): 551–555.

    Article  Google Scholar 

  • Gorr, Wilpen, Andreas Olligschlaeger, and Yvonne Thompson. 2003. Short-term forecasting of crime. International Journal of Forecasting 19 (4): 579–594.

    Article  Google Scholar 

  • Harries, Richard. 2003. Modelling and predicting recorded property crime trends in England and Wales—A retrospective. International Journal of Forecasting 19 (4): 557–566.

    Article  Google Scholar 

  • Hart, Timothy, and Paul Zandbergen. 2014. Kernel density estimation and hotspot map**: Examining the influence of interpolation method, grid cell size, and bandwidth on crime forecasting. Policing: An International Journal 37 (2): 305–323.

    Article  Google Scholar 

  • Helske, Jouni. 2017. KFAS: Exponential family state space models in R. Journal of Statistical Software 78 (10): 1–39.

    Article  Google Scholar 

  • Hu, Yujie, Fahui Wang, Cecile Guin, and Haojie Zhu. 2018. A spatio-temporal kernel density estimation framework for predictive crime hotspot map** and evaluation. Applied Geography 99: 89–97.

    Article  Google Scholar 

  • Hyndman, Rob J., Roman A. Ahmed, George Athanasopoulos, and Han Lin Shang. 2011. Optimal combination forecasts for hierarchical time series. Computational Statistics and Data Analysis 55: 2579–2589.

    Article  Google Scholar 

  • Hyndman, Rob J., Alan J. Lee, and Earo Wang. 2016. Fast computation of reconciled forecasts for hierarchical and grouped time series. Computational Statistics and Data Analysis 97: 16–32.

    Article  Google Scholar 

  • Jha, Sudan, Eunmok Yang, Alaa Omran Almagrabi, Ali Kashif Bashir, and Gyanendra Prasad Joshi. 2021. Comparative analysis of time series model and machine testing systems for crime forecasting. Neural Computing and Applications 33: 10621–10636.

    Article  Google Scholar 

  • Jiang, Quanbao, and Jesús Javier Sánchez. Barricarte. 2011. A crime rate forecast and decomposition method. International Journal of Criminology and Sociological Theory 4 (2): 648–656.

    Google Scholar 

  • Kadar, Cristina, and Irena Pletikosa. 2018. Mining large-scale human mobility data for long-term crime prediction. EPJ Data Science 7: 1–27.

    Article  Google Scholar 

  • Kennedy, Leslie W., and Joel M. Caplan. 2012. A theory of risky places. Technical Report. Rutgers Center on Public Security.

  • Kennedy, Leslie W., and Marco Dugato. 2018. Forecasting crime and understanding its causes. Applying risk terrain modeling worldwide. European Journal on Criminal Policy and Research 24: 345–350.

    Article  Google Scholar 

  • Kounadi, Ourania, Alina Ristea, Adelson Araujo Jr., and Michael Leitner. 2020. A systematic review on spatial crime forecasting. Crime Science 9: 1–22.

    Article  Google Scholar 

  • Liesenfeld, Roman, Jean-François. Richard, and Jan Vogler. 2017. Likelihood-based inference and prediction in spatio-temporal panel count models for urban crimes. Journal of Applied Econometrics 32 (3): 600–620.

    Article  Google Scholar 

  • Orcutt, Guy H., Harold W. Watts, and John B. Edwards. 1968. Data aggregation and information loss. The American Economic Review 58 (4): 773–787.

    Google Scholar 

  • R Core Team. 2013. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/

  • Schafer, Juliane, and Korbinian Strimmer. 2005. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology 4 (1): 32.

    Article  Google Scholar 

  • Seixas, Luis Antônio Fonseca, Ricardo Ribas da Costa, Vinícius Augusto R. Chelotti Brum de Almeida, Maíra Alarcon Salomão, and Greice Maria Silva da Conceição. 2010. Manual de procedimentos para o sistema de metas e acompanhamento de resultados. Secretaria de Segurança Pública do Estado do Rio de Janeiro.

  • Shamsuddin, Nurul Hazwani Mohd, Nor Azizah Ali, and Razana Alwee. 2017. An overview on crime prediction methods. In: 2017 6th ICT International Student Project Conference (ICT-ISPC), (pp. 1–5).

  • Shlifer, E., and R.W. Wolff. 1979. Aggregation and proration in forecasting. Management Science 25 (6): 594–603.

    Article  Google Scholar 

  • Sonnichsen, Richard C. 1997. Measuring police performance. In: Monitoring performance in the public sector. London: Routledge.

  • Tague, Nancy R. 2023. The quality toolbox, 3rd ed. Milwaukee: ASQ Quality Press.

    Google Scholar 

  • Tiwana, Neena, Gary Bass, and Graham Farrell. 2015. Police performance measurement: An annotated bibliography. Crime Science 4: 1–28.

    Article  Google Scholar 

  • Vomfell, Lara, Wolfgang Karl Härdle, and Stefan Lessmann. 2018. Improving crime count forecasts using Twitter and taxi data. Decision Support Systems 113: 73–85.

    Article  Google Scholar 

  • Wang, Hongjian, Daniel Kifer, Corina Graif, and Zhenhui Li. 2016. Crime rate inference with big data. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (pp. 635–644).

  • Wang, **aofeng, Donald E. Brown, and Matthew S. Gerber. 2012. Spatio-temporal modeling of criminal incidents using geographic, demographic, and twitter-derived information. In: 2012 IEEE International Conference on Intelligence and Security Informatics (pp. 36–41).

  • Wickramasuriya, Shanika L., George Athanasopoulos, and Rob J. Hyndman. 2019. Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. Journal of the American Statistical Association 114 (526): 804–819.

    Article  Google Scholar 

  • Wickramasuriya, Shanika L., Berwin A. Turlach, and Rob J. Hyndman. 2020. Optimal non-negative forecast reconciliation. Statistics and Computing 30: 1167–1182.

    Article  Google Scholar 

  • Zhao, **angyu, and Jiliang Tang. 2017. Modeling temporal-spatial correlations for crime prediction. In: 2017 ACM on Conference on Information and Knowledge Management (pp. 497–506).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus L. Nascimento.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Out-of-sample forecast performances

See Table 2.

Table 2 Out-of-sample forecast performances based on the root mean square error (RMSE)

Appendix 2: RISP × AISP × CISP × neighborhood

See Table 3.

Table 3 Relations among CISPs, AISPs, RISPs, and neighborhoods in the city of Rio de Janeiro

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, M.L., Barreto, L.M. Improving crime count forecasts in the city of Rio de Janeiro via reconciliation. Secur J (2024). https://doi.org/10.1057/s41284-024-00433-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1057/s41284-024-00433-5

Keywords

Navigation