Log in

Transient Brewster angle reflectometry of spiropyran monolayers

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Brewster angle reflectometry has been developed as a tool for determining the absorbance and refractive index changes in molecular monolayers containing spiropyran. The method is sensitive to changes in both the real and imaginary parts of the refractive index in the monolayers. It was used to monitor the conversion of spiropyran to merocyanine and the reversal of this reaction when the molecules were immobilised on quartz using silane coupling. An analytical solution of Fresnel formula allowed the transient reflectometry data to be converted into transient absorption information. Absorbances of transients as low as ~10−6 were possible using the current apparatus with a single laser pulse transient measurement. It was found that spiropyran photoconverted to merocyanine with an efficiency of ~0.1. The photochemical reversion of converted merocyanine to spiropyran occurred with efficiencies of 0.03-0.2 and this was probably site dependent. It was found that the thermal conversion from merocyanine to spiropyran was slow and even after 10 min there was no significant thermal reversion. This measurement was possible because the real part of the refractive index of the monolayer could be monitored with time using an off-resonance probe at a wavelength where the merocyanine did not absorb light meaning that the probe did not photobleach the sample. Thus our method also provides a non-intrusive method for probing changes in molecules in thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wang, Y. Song and L. Jiang, Photoresponsive surfaces with controllable wettability, J. Photochem. Photobiol., C, 2007, 8, 18.

    Article  CAS  Google Scholar 

  2. R. Rosario, D. Gust, M. Hayes, F. Jahnke, J. Springer and A. A. Garcia, Photon-modulated wettability changes on spiropyran-coated surfaces, Langmuir, 2002, 18, 8062.

    Article  CAS  Google Scholar 

  3. A. Athanassiou, M. Varda, E. Mele, M. I. Lygeraka, D. Pisignano, M. Farsari, C. Fotakis, R. Cingolani and S. H. Anastasiadis, Combination of microstructuring and laser irradiation for the reversible wettabiltiy of photosensitised polymer surfaces, Appl. Phys. A: Mater. Sci. Process., 2006, 83, 351.

    Article  CAS  Google Scholar 

  4. H. Tachibana, Y. Yamanaka, H. Sakai, M. Abe and M. Matsumoto, J-aggregate formation of amphiphilic merocyanine in Langmuir-Blodgett films, J. Lumin., 2000, 87-89, 800.

    Article  CAS  Google Scholar 

  5. M. Matsumoto, Photoreactions and lateral patterning in Langmuir and Langmuir-Blodgett films, Chem. Rec., 2007, 7, 69.

    Article  CAS  Google Scholar 

  6. K. Balashev, I. Panaitov and J. E. Proust, Propagation of photoinduced surface pressure perturbation along a mixed benzospiropyran-octadecanol monolayer, Langmuir, 1997, 13, 5373.

    Article  CAS  Google Scholar 

  7. J. Hobley, T. Oori, S. Gorelik, S. Kajimoto, H. Fukumura and D. Hönig, Time-resolved Brewster angle microscopy for photochemical and photothermal studies on thin-films and monolayers, J. Nanosci. Nanotechnol., 2008, 8, 1.

    Article  Google Scholar 

  8. J. Hobley, T. Oori, S. Kajimoto, S. Gorelik, K. Hatanaka, D. Hönig and H. Fukumura, Laser-induced phase change in Langmuir films observed using nanosecond pump-probe Brewster angl microscopy, Appl. Phys. A: Mater. Sci. Process., 2008, 93, 947.

    Article  CAS  Google Scholar 

  9. M. J. Lear and J. Hobley, You make it, I break it, COSMOS, 2008, 4, 99.

    Article  Google Scholar 

  10. E. Katz, B. Willner and I. Willner, Light-controlled electron transfer reactions at photoisomeririzable monolayer electrodes by means of electrostatic interactions: active interfaces for amperometric transduction of recorded optical signals, Biosens. Bioelectron., 1997, 12(8), 703.

    Article  CAS  Google Scholar 

  11. B. Mecheri, P. Baglioni, O. Pieroni and G. Caminati, Molecular switching in nano-structured photochromic films of biopolymers, Mater. Sci. Eng., C, 2003, 23, 893.

    Article  Google Scholar 

  12. E. Aznar, R. Casasus, B. Garcia-Acosta, M. D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto and P. Amoros, Photochemical and chemical two-channel control of functional hybrid architectures, Adv. Mater., 2007, 19, 2228.

    Article  CAS  Google Scholar 

  13. T. Seki, Dynamic photoresponsive functions in organized layer systems comprised of azobenzene-containing polymers, Polym. J., 2004, 36(6), 435.

    Article  CAS  Google Scholar 

  14. Y.-G. Mo, R. O. Dillon, P. G. Snyder and T. E. Tiwald, Optical properties of photochromic organic-inorganic composites, Thin Solid Films, 1999, 355, 1.

    Article  Google Scholar 

  15. Y.-G. Mo, R. O. Dillon and P. G. Snyder, Spectroscopic analysis of photochromic films, J. Vac. Sci. Technol., A, 1999, 17(1), 170.

    Article  CAS  Google Scholar 

  16. S.-H. Kim, H.-J. Suh, K.-N. Koh, S.-A. Suck, H.-J. Choi and H.-S. Kim, Surface plasmon resonance study on the interaction between photochromic spironaphthoxazine with L-phenylalanine in self assembled monolayers on gold, Dyes Pigm., 2004, 62, 93.

    Article  CAS  Google Scholar 

  17. K. Sasaki and T. Nagamura, Ultrafast all-optical switch using complex refractive index changes of thin films containing photochromic dyes, Appl. Phys. Lett., 1997, 71(4), 434.

    Article  CAS  Google Scholar 

  18. P. Kubelka and F. Munk, Ein Beitrag zur optik der farbanstriche, Z. Tech. Phys., 1931, 12, 593.

    Google Scholar 

  19. F. Wilkinson and C. J. Willsher, The use of diffuse reflectance laser flash photolysis to study primary photoprocesses in anisotropic media, Tetrahedron, 1987, 43(7), 1197.

    Article  CAS  Google Scholar 

  20. G. P. Kelly, P. A. Leicester, F. Wilkinson, D. R. Worrall, L. F. Vieira Ferreira, R. Chittock and W. toner, Picosecond diffuse reflectance and transmission laser photolysis study of various triaryl-2-pyrazolines, Spectrochim. Acta, Part A, 1990, 46(6), 975.

    Article  Google Scholar 

  21. M. Ichikawa, H. Fukumura and H. Masuhara, Picosecond regular reflection spectroscopic study on ultrafast heat generation in copper phthalocyanine solid, J. Phys. Chem., 1994, 98, 12211.

    Article  CAS  Google Scholar 

  22. H. Kawai, K. Nakano and T. Nagamura, White light optical waveguide detection of transient absorption spectra in ultrathin organic films upon pulsed laser excitation, Chem. Lett., 2001, 1300.

    Google Scholar 

  23. D. Kleine, J. Lauterbach, K. Kleinermans and P. Hering, Cavity ring-down spectroscopy of molecularly thin iodine films, Appl. Phys. B: Lasers Optics, 2001, 72, 249.

    Article  CAS  Google Scholar 

  24. J. A. Piest, M. Anni, R. Cingolani and G. Gigli, Singlet to triplet excitation spectrum of thin film tris-(8-hydroxyquinolate)-aluminium in direct absorption, Synth. Met., 2008, 158, 1062.

    Article  CAS  Google Scholar 

  25. I. M. P. Aarts, B. Hoex, A. H. M. Smets, R. Engeln, W. M. M. Kessels and M. C. M. van de Sanden, Direct and highly sensitive measurement of defect-related absorption in amorphous silicon thin films by cavity ring-down spectroscopy, Appl. Phys. Lett., 2004, 84(16), 3079.

    Article  CAS  Google Scholar 

  26. R. N. Muir and A. J. Alexander, Structure of monolayer dye films studied by Brewster angle cavity ring-down spectroscopy, Phys. Chem. Chem. Phys., 2003, 5, 1279.

    Article  CAS  Google Scholar 

  27. C. Zhu, B. **ang, L. Zhu and R. Cole, Determination of absorption cross sections of surface adsorbed HNO3 in the 290-330nm region by Brewster angle cavity ring-down spectroscopy, Chem. Phys. Lett., 2008, 458, 373.

    Article  CAS  Google Scholar 

  28. X. Wang, M. Hinz, M. Vogelsang, T. Welsch, D. Kaufmann and H. Jones, A new approach to detecting biologically active substances with evanescent wave cavity ring-down spectroscopy, Chem. Phys. Lett., 2008, 467, 9.

    Article  CAS  Google Scholar 

  29. R. Katoh, A. Furube, A. V. Barzykin, H. Arakawa and M. Tachya, Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors, Coord. Chem. Rev., 2004, 248, 1195.

    Article  CAS  Google Scholar 

  30. T. Yoshihara, M. Murai, Y. Tamaki, A. Furube and R. Katoh, Trace analysis by transient absorption spectroscopy: estimation of the solubility of C60 in polar solvents, Chem. Phys. Lett., 2004, 394, 161.

    Article  CAS  Google Scholar 

  31. R. Teppner, S. Bae, K. Haage and H. Motschmann, On the Analysis of Ellipsometric Measurements of Adsorption Layers at Fluid Interfaces, Langmuir, 1999, 15, 7002–7009.

    Article  CAS  Google Scholar 

  32. B. L. Frey, R. M. Corn and S. C. Weibel, Polarization-Modulation Approaches to Reflection-Absorption Spectroscopy, in Handbook of Vibrational Spectroscopy, ed. J. Chalmers and P. R. Griffiths, John Wiley & Sons, Chichester, UK, 2001, vol. 2. pp. 1042–1056.

    Google Scholar 

  33. S. Henon and J. Meunier, Microscope at the Brewster-angle - Direct observation of 1st-order phase transitions in monolayers, Rev. Sci. Instrum., 1991, 62(4), 936.

    Article  CAS  Google Scholar 

  34. D. Hönig, D. Möbius, Direct visualisation of monolayers at the air-water interface by Brewster-angle microscopy, J. Phys. Chem., 1991, 95(12), 4590.

    Article  Google Scholar 

  35. au]2_H. Fujiwara, Spectroscopic Ellipsometry, Principles and applications, Wiley, West Sussex, England, 2007, p. 33; (b) p. 46.; (c) p. 26.; (d) p. 176.; (e) p. 178.

    Book  Google Scholar 

  36. D. A. Reeves and F. Wilkinson, Photochromism of Spiropyrans: Part 1. Mechanism of photocolouration, J. Chem. Soc., Faraday Trans. 2, 1973, 69, 1381.

    Article  CAS  Google Scholar 

  37. CRC Handbook, Refractive index and transmittance of representative glasses, CRC Press, Boca Raton, Florida, 79th edn, 1998-1999, pp. 10–217.

  38. J. Hobley, V. Malatesta, R. Millini, L. Montanari and W. O. N. Parker Jr, Proton exchange and isomerization reactions of photochromic and reverse photochromic spiro-pyrans and their merocyanine forms, Phys. Chem. Chem. Phys., 1999, 1, 3259.

    Article  CAS  Google Scholar 

  39. J. M. Galvin and G. B. Schuster, Preparation and characterization of mixed thin films containing spiropyrans and long chain alkyl silanes: towards a command of surfaces for liquid crystal realignment, Supramol. Sci., 1998, 5, 89.

    Article  CAS  Google Scholar 

  40. J. Hobley and F. Wilkinson, Photochromism of naphthoxazine-spiro-indolines by direct excitation and following sensitisation by triplet-energy donors, J. Chem. Soc., Faraday Trans., 1996, 92(8), 1323.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is part of a themed issue on synthetic and natural photoswitches.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorelik, S., Hongyan, S., Lear, M.J. et al. Transient Brewster angle reflectometry of spiropyran monolayers. Photochem Photobiol Sci 9, 141–151 (2010). https://doi.org/10.1039/b9pp00105k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b9pp00105k

Navigation