Main

Epigenetic inactivation of tumour suppressor genes (TSGs) by promoter region CpG island hypermethylation is now well documented and several TSGs have been demonstrated to be inactivated by this mechanism (reviewed in Jones and Baylin, 2002; Herman and Baylin, 2003). In more recent years, a novel class of TSGs has been identified where epigenetic inactivation plays the predominant role, while somatic mutations are rare. This class of genes is exemplified by the 3p21.3 TSG, Ras association domain family 1A gene (RASSF1A) (Dammann et al, 2000; Lerman and Minna, 2000; Agathanggelou et al, 2001; Burbee et al, 2001). The CpG island in the promoter region of isoform A is frequently and heavily methylated in many types of cancers, including lung, breast, kidney, NPC, gastric, bladder, neuroblastoma, testicular, etc. (reviewed in Pfeifer et al, 2002; Dammann et al, 2003), while somatic inactivating mutations are absent or rare.

SLITs, ROBOs and Semaphorins belong to families of proteins that play important roles in axon guidance and cell migration in Drosophila and vertebrates (reviewed in Brose and Tessier-Lavigne, 2000; Wong et al, 2002). These proteins are widely expressed in mammalian tissues and the expression is not confined to neurons. Hence, they may have other yet unidentified roles. Slits are secreted proteins that are ligands for the Robo receptors (Brose et al, 1999; Kidd et al, 1999; Li et al, 1999). Recently, Slit was shown to inhibit leucocyte chemotaxis, this inhibition appears to be mediated by Robo (Wu et al, 2001). In mammals, four Robo genes have so far been identified, Robo1, Robo2, Rig-1 (Robo3) and magic Robo (Robo4) (Kidd et al, 1998; Girard et al, 2000; Goel et al, 2003). We have now demonstrated that SLIT3 5′ CpG island similar to SLIT2 is frequently hypermethylated in colorectal and glioma tumours and less so in breast tumours. And loss of SLIT3 expression can be reversed by treatment with a demethylating agent. While SLIT1 gene is frequently methylated in glioma tumour lines but at low frequencies in glioma tumours, hence SLIT1 may play a role in late gliomagenesis.

Slits, netrins, semaphorins and the ephrins constitute conserved families of axonal guidance cues that have prominent developmental effects. Recently, SEMA3B was also demonstrated to be inactivated in lung cancer by promoter region hypermethylation (Tomizawa et al, 2001; Kuroki et al, 2003). Re-expression of SEMA3B inhibited lung cancer cell growth and induced apoptosis.

The finding of epigenetic inactivation in various human cancers of ROBO1, SEMA3B, SLIT2 and now SLIT3 and to a lesser extent SLIT1, all of which are involved in axon and cell migration in Drosophila and vertebrates, suggests a novel, and common underlying theme for these molecules in tumour suppression.