Log in

Rapid automated iterative small-molecule synthesis

  • Article
  • Published:

From Nature Synthesis

View current issue Submit your manuscript

A Publisher Correction to this article was published on 11 June 2024

This article has been updated

Abstract

Automated iterative small-molecule synthesis has the potential to advance and democratize the discovery of new medicines, materials and many other classes of functional chemical matter. To date, however, this approach has been limited because each carbon–carbon bond-forming step takes about a day. Here we report a next-generation small-molecule synthesizer that operates an order of magnitude faster than previous systems through improvements in both chemistry and engineering. Key advances include the discovery that rapid Suzuki–Miyaura cross-couplings under homogeneous conditions, although not tolerated by N-methyliminodiacetic acid boronates, are fully compatible with their more stable tetramethyl-N-methyliminodiacetic acid boronate counterparts, and the development of optimized cartridges for rapid catch-and-release purification. These findings move the field of small-molecule synthesis a step closer to democratizing its core discovery engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Different iterative cross-coupling platforms.
Fig. 2: Development and scope of iterative TMSOK-promoted couplings.
Fig. 3: Development of TIDA to pinacol transligation with TMSOK.
Fig. 4: Automated platform for rapid iterative small-molecule synthesis.

Similar content being viewed by others

Data availability

The data and methods that support the findings of this study are available in the Supplementary Information, which describes the manual and automated synthesis methods, kinetic studies and control experiments.

Change history

References

  1. Merrifield, R. B. Automated synthesis of peptides. Science 150, 178–185 (1965).

    Article  CAS  PubMed  Google Scholar 

  2. Caruthers, M. H. Gene synthesis machines: DNA chemistry and its uses. Science 230, 281–285 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell, A. R. Bruce Merrifield and solid-phase peptide synthesis: a historical assessment. Pept. Sci. 90, 175–184 (2008).

    Article  CAS  Google Scholar 

  4. Tian, J., Li, Y., Ma, B., Tan, Z. & Shang, S. Automated peptide synthesizers and glycoprotein synthesis. Front. Chem. 10, 896098 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, L. et al. Therapeutic peptides: current applications and future directions. Signal Transduct. Target. Ther. 7, 48–74 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Trevino, V., Falciani, F. & Barrera-Saldaña, H. A. DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol. Med. 13, 527–541 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Khorana, H. G. Total synthesis of a gene. Science 203, 614–625 (1979).

    Article  CAS  PubMed  Google Scholar 

  9. Kent, S. B. H. Total chemical synthesis of proteins. Chem. Soc. Rev. 38, 338–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Gigoux, M. et al. Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine. Sci. Transl. Med. 14, eaba4380 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Kwon, P. S. et al. Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat. Chem. 12, 26–35 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Plante, O. J., Palmacci, E. R. & Seeberger, P. H. Automated solid-phase synthesis of oligosaccharides. Science 291, 1523–1527 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Coste, J., Le-Nguyen, D. & Castro, B. PyBOP®: a new peptide coupling reagent devoid of toxic by-product. Tetrahedron Lett. 31, 205–208 (1990).

    Article  CAS  Google Scholar 

  14. Saebi, A. et al. Rapid single-shot synthesis of the 214 amino acid-long N-terminal domain of pyocin S2. ACS Chem. Biol. 18, 518–527 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pedersen, S. L., Tofteng, A. P., Malik, L. & Jensen, K. J. Microwave heating in solid-phase peptide synthesis. Chem. Soc. Rev. 41, 1826–1844 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Danglad-Flores, J. et al. Microwave-assisted automated glycan assembly. J. Am. Chem. Soc. 143, 8893–8901 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beck, H., Härter, M., Haß, B., Schmeck, C. & Baerfacker, L. Small molecules and their impact in drug discovery: a perspective on the occasion of the 125th anniversary of the Bayer Chemical Research Laboratory. Drug Discov. Today 27, 1560–1574 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Trobe, M. & Burke, M. D. The molecular industrial revolution: automated synthesis of small molecules. Angew. Chem. Int. Ed. 57, 4192–4214 (2018).

    Article  CAS  Google Scholar 

  19. Gillis, E. P. & Burke, M. D. A simple and modular strategy for small-molecule synthesis: iterative Suzuki–Miyaura coupling of B-protected haloboronic acid building blocks. J. Am. Chem. Soc. 129, 6716–6717 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Li, J., Grillo, A. S. & Burke, M. D. From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks. Acc. Chem. Res. 48, 2297–2307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lehmann, J. W., Blair, D. J. & Burke, M. D. Towards the generalized iterative synthesis of small molecules. Nat. Rev. Chem. 2, 0115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li, J. et al. Synthesis of many different types of organic small molecules using one automated process. Science 347, 1221–1226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, S. et al. Using automated synthesis to understand the role of side chains on molecular charge transport. Nat. Commun. 13, 2102 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, T. C. et al. A materials acceleration platform for organic laser discovery. Adv. Mater. 35, 2207070 (2023).

    Article  CAS  Google Scholar 

  25. Angello, N. H. et al. Closed-loop optimization of general reaction conditions for heteroaryl Suzuki–Miyaura coupling. Science 378, 399–405 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Blair, D. J. et al. Automated iterative Csp3–C bond formation. Nature 604, 92–97 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Delaney, C. P., Kassel, V. M. & Denmark, S. E. Potassium trimethylsilanolate enables rapid, homogeneous Suzuki–Miyaura cross-coupling of boronic esters. ACS Catal. 10, 73–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Delaney, C. P. et al. Potassium trimethylsilanolate-promoted, anhydrous Suzuki–Miyaura cross-coupling reaction proceeds via the “boronate mechanism”: evidence for the alternative fork in the trail. J. Am. Chem. Soc. 144, 4345–4364 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kassel, V. M., Hanneman, C. M., Delaney, C. P. & Denmark, S. E. Heteroaryl–heteroaryl, Suzuki–Miyaura, anhydrous cross-coupling reactions enabled by trimethyl borate. J. Am. Chem. Soc. 143, 13845–13853 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roush, W. R. & Brown, B. B. Application of the steric directing group strategy to the stereoselective synthesis of the octahydronaphthalene substructure of kijanolide and tetronolide. J. Am. Chem. Soc. 115, 2268–2278 (1993).

    Article  CAS  Google Scholar 

  31. Cox, P. A. et al. Base-catalyzed Aryl-B(OH)2 protodeboronation revisited: from concerted proton transfer to liberation of a transient aryl anion. J. Am. Chem. Soc. 139, 13156–13165 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Fischer, F. C. & Havinga, E. Thermal and photoinduced deboronations of some pyridine- and benzeneboronate anions. Recl. Trav. Chim. Pays-Bas 93, 21–24 (1974).

    Article  CAS  Google Scholar 

  33. Dreos, R. et al. A molecular box derived from cobaloxime units held together by 4-pyridinylboronic acid residues. Inorg. Chem. 40, 5536–5540 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Hayes, H. L. D. et al. Protodeboronation of (hetero)arylboronic esters: direct versus prehydrolytic pathways and self-/auto-catalysis. J. Am. Chem. Soc. 143, 14814–14826 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Li, S. et al. Transition between nonresonant and resonant charge transport in molecular junctions. Nano Lett. 21, 8340–8347 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Woerly, E. M., Roy, J. & Burke, M. D. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction. Nat. Chem. 6, 484–491 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, C. F. et al. Amine hemilability enables boron to mechanistically resemble either hydride or proton. Nat. Chem. 10, 1062–1070 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Fasano, V. et al. Automated stereocontrolled assembly-line synthesis of organic molecules. Nat. Synth. 1, 902–907 (2022).

    Article  Google Scholar 

  39. Wang, G., Ang, H. T., Dubbaka, S. R., O’Neill, P. & Wu, J. Multistep automated synthesis of pharmaceuticals. Trends Chem. 5, 432–445 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Molecule Maker Lab Institute, an AI Research Institutes programme supported by the US National Science Foundation under grant number 2019897 (M.D.B.). N.H.A. was supported by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the NSF. The authors gratefully acknowledge S. Denmark, V. Kassel and M. Bock for advice regarding TMSOK-promoted couplings. D.J.B. thanks the American Lebanese Syrian Associated Charities (ALSAC) and St Jude Children’s Research Hospital for support.

Author information

Authors and Affiliations

Authors

Contributions

M.D.B., W.W., N.H.A. and D.J.B. conceived this project. W.W., N.H.A., D.J.B., T.T.-E., W.H.K., K.N.S.M., A.J.L., J.M.B. and M.D.B. designed and executed the experiments. W.W., N.H.A., D.J.B. and M.D.B. wrote the paper.

Corresponding author

Correspondence to Martin D. Burke.

Ethics declarations

Competing interests

The University of Illinois has filed patent applications related to MIDA and TIDA boronates with M.D.B., W.W., N.H.A., D.J.B. and T.T.-E. as inventors. The other authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Timothy Cernak and Jie Wu for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Sections 1–4, Figs. 1–34 and Tables 1–7.

Supplementary Data 1

Source data for graphs in the Supplementary Figures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Angello, N.H., Blair, D.J. et al. Rapid automated iterative small-molecule synthesis. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00558-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00558-w

  • Springer Nature Limited

Navigation