Log in

Spurious intragenic transcription is a feature of mammalian cellular senescence and tissue aging

  • Article
  • Published:

From Nature Aging

View current issue Submit your manuscript

Abstract

Mammalian aging is characterized by the progressive loss of tissue function and increased risk for disease. Accumulation of senescent cells in aging tissues partly contributes to this decline, and targeted depletion of senescent cells in vivo ameliorates many age-related phenotypes. The fundamental molecular mechanisms responsible for the decline of cellular health and fitness during senescence and aging are largely unknown. In this study, we investigated whether chromatin-mediated loss of transcriptional fidelity, known to contribute to fitness and survival in yeast and worms, also occurs during human cellular senescence and mouse aging. Our findings reveal aberrant transcription initiation inside genes during senescence and aging that co-occurs with changes in the chromatin landscape. Interventions that alter these spurious transcripts have profound consequences on cellular health, primarily affecting intracellular signal transduction pathways. We propose that age-related spurious transcription promotes a noisy transcriptome and degradation of coherent transcriptional networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Cryptic TSSs are activated in proliferating and senescent cells.
Fig. 2: Chromatin acetylation profiles around cryptic TSSs suggest that H3K27ac drives cryptic transcription.
Fig. 3: Chromatin methylation profiles around cryptic TSSs suggest an enhancer-to-promoter conversion in senescent cells.
Fig. 4: Senescent-not-Proliferating cryptic TSSs lose DNA methylation in senescence.
Fig. 5: The AP1 family of pioneer factors drives the formation of cryptic TSSs.
Fig. 6: Aged mouse livers show evidence of intragenic cryptic transcription.

Similar content being viewed by others

Data availability

The GEO accession number for all genome-wide datasets generated in this article is GSE156829. The following publicly available datasets downloaded from the GEO and used in this study are:

1. Shah et al., 2013 – GSE36616

2. Cruickshanks et al., 2013 – GSE48580

3. Rai et al., 2014 – GSE56307

4. Sen et al., 2019 – GSE106146

5. Chan et al., 2022 – GSE175533

All image data have been deposited to Mendeley Data (https://doi.org/10.17632/mtns8fjk9w.1). See also Source Data (for qPCR analysis, western blot and microscopy images) accompanying this manuscript.

Code availability

All code used in this manuscript has been deposited to GitHub: https://github.com/gdonahue/Sen_NA_2022.

References

  1. Kornberg, R. D. Eukaryotic transcriptional control. Trends Cell Biol. 9, M46–M49 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Smolle, M., Workman, J. L. & Venkatesh, S. reSETting chromatin during transcription elongation. Epigenetics 8, 10–15 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sen, P. et al. H3K36 methylation promotes longevity by enhancing transcriptional fidelity. Genes Dev. 29, 1362–1376 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pu, M. et al. Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev. 29, 718–731 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neri, F. et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543, 72–77 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Brocks, D. et al. DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nat. Genet. 49, 1052–1060 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McCauley, B. S. et al. Altered chromatin states drive cryptic transcription in aging mammalian stem cells. Nat. Aging 1, 684–697 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharpless, N. E. & Sherr, C. J. Forging a signature of in vivo senescence. Nat. Rev. Cancer 15, 397–408 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nat. Rev. Cancer 6, 472–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krimpenfort, P. & Berns, A. Rejuvenation by therapeutic elimination of senescent cells. Cell 169, 3–5 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic mechanisms of longevity and aging. Cell 166, 822–839 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, N. & Sen, P. The senescent cell epigenome. Aging (Albany NY) 10, 3590–3609 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Alcorta, D. A. et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA 93, 13742–13747 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shah, P. P. et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 27, 1787–1799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Freund, A., Laberge, R. M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dou, Z. et al. Autophagy mediates degradation of nuclear lamina. Nature 527, 105–109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shimi, T. et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 25, 2579–2593 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. O’Sullivan, R. J., Kubicek, S., Schreiber, S. L. & Karlseder, J. Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat. Struct. Mol. Biol. 17, 1218–1225 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bahar, R. et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441, 1011–1014 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Burgess, D. J. Epigenetics: therapy-induced transcription is cryptically widespread. Nat. Rev. Cancer 17, 456 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Mahat, D. B. et al. Base-pair-resolution genome-wide map** of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat. Protoc. 11, 1455–1476 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Campisi, J. Replicative senescence: an old lives’ tale? Cell 84, 497–500 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Sen, P. et al. Histone acetyltransferase p300 induces de novo super-enhancers to drive cellular senescence. Mol. Cell 73, 684–698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ernst, J. et al. Map** and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. **, Y., Eser, U., Struhl, K. & Churchman, L. S. The ground state and evolution of promoter region directionality. Cell 170, 889–898 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, B. et al. Infrequently transcribed long genes depend on the Set2/Rpd3S pathway for accurate transcription. Genes Dev. 21, 1422–1430 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heyn, P., Kalinka, A. T., Tomancak, P. & Neugebauer, K. M. Introns and gene expression: cellular constraints, transcriptional regulation, and evolutionary consequences. Bioessays 37, 148–154 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21, 71–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Giaimo, B. D., Ferrante, F., Herchenrother, A., Hake, S. B. & Borggrefe, T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 12, 37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wagner, E. J. & Carpenter, P. B. Understanding the language of Lys36 methylation at histone H3. Nat. Rev. Mol. Cell Biol. 13, 115–126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. **, C. et al. H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions’ of active promoters and other regulatory regions. Nat. Genet. 41, 941–945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shaulian, E. & Karin, M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131–E136 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Rai, T. S. et al. HIRA orchestrates a dynamic chromatin landscape in senescence and is required for suppression of neoplasia. Genes Dev. 28, 2712–2725 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chan, M. et al. Novel insights from a multiomics dissection of the Hayflick limit. eLife 11, e70283 (2022).

  45. Ellyard, J. I. & Vinuesa, C. G. A BATF-ling connection between B cells and follicular helper T cells. Nat. Immunol. 12, 519–520 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chu, T. et al. Chromatin run-on and sequencing maps the transcriptional regulatory landscape of glioblastoma multiforme. Nat. Genet. 50, 1553–1564 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mitchell, S. J. et al. Effects of sex, strain, and energy intake on hallmarks of aging in mice. Cell Metab. 23, 1093–1112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, S. et al. Mechanistic heterogeneity in site recognition by the structurally homologous DNA-binding domains of the ETS family transcription factors Ets-1 and PU.1. J. Biol. Chem. 289, 21605–21616 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kowalczyk, M. S. et al. Intragenic enhancers act as alternative promoters. Mol Cell 45, 447–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Martinez-Zamudio, R. I. et al. AP-1 imprints a reversible transcriptional programme of senescent cells. Nat. Cell Biol. 22, 842–855 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, C. et al. ATF3 drives senescence by reconstructing accessible chromatin profiles. Aging Cell 20, e13315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moulton, K. S., Semple, K., Wu, H. & Glass, C. K. Cell-specific expression of the macrophage scavenger receptor gene is dependent on PU.1 and a composite AP-1/ets motif. Mol. Cell. Biol. 14, 4408–4418 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, H., Moulton, K., Horvai, A., Parik, S. & Glass, C. K. Combinatorial interactions between AP-1 and ets domain proteins contribute to the developmental regulation of the macrophage scavenger receptor gene. Mol. Cell. Biol. 14, 2129–2139 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Madrigal, P. & Alasoo, K. AP-1 takes centre stage in enhancer chromatin dynamics. Trends Cell Biol. 28, 509–511 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Martin-Herranz, D. E. et al. Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1. Genome Biol. 20, 146 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

    Article  PubMed  Google Scholar 

  58. Cruickshanks, H. A. et al. Senescent cells harbour features of the cancer epigenome. Nat. Cell Biol. 15, 1495–1506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aoi, Y. et al. NELF regulates a promoter-proximal step distinct from RNA Pol II pause-release. Mol. Cell 78, 261–274 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blumberg, A. et al. Characterizing RNA stability genome-wide through combined analysis of PRO-seq and RNA-seq data. BMC Biol. 19, 30 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Alexander and D. Mahat for PRO-seq/PRO-cap/ChRO-cap guidance and members of the Berger laboratory for critical reading of the manuscript. We would also like to thank D. Jha for insightful discussions. This work was supported by National Institutes of Health/National Institute on Aging grant P01AG031862 to S.L.B., American Heart Association grant 15POST21230000, AFAR Irene Diamond Transition Award DIAMOND 17113 and National Institute on Aging Intramural Research Program grant ZIA-AG-000679 to P.S.

Author information

Authors and Affiliations

Authors

Contributions

P.S. and S.L.B. conceptualized the work. P.S. generated most genome-wide datasets used in this study (except those already published, as indicated in Supplementary Table 2). C.L. performed functional experiments, such as qPCR detection of PRO-cap peaks and replicative senescence assays with cells overexpressing BATF. G.E. performed PRO-cap on cells overexpressing BATF. N.Y. helped in wet lab experiments. G.D., E.K. and Y.L. performed bioinformatics analyses of data. N.R. processed WGBS data, which were generated in the laboratory of P.D.A. D.C.S. provided concentrated lentiviral preparations used in this study. P.P.S. performed ATAC-seq and participated in discussions.

Corresponding authors

Correspondence to Payel Sen or Shelley L. Berger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Aging thanks Jesus Gil and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information.

Supplementary Figure Legends 1–9, Supplementary Tables 1–4 (Supplementary Table 1 supplied as Supplementary Data), Supplementary Source Data, Supplementary References and Supplementary Figs. 1–9

Reporting Summary

Supplementary Table 1.

List of Proliferating-not-Senescent, Senescent-not-Proliferating, Young-not-Old and Old-not-Young peaks.

Source data

Source Data Fig. 1

qPCR raw data for Fig. 1i

Source Data Fig. 5

β-gal assay and EdU assay raw data and calculations for Fig. 5a,i

Source Data Fig. 5

Unprocessed western blot and EdU images for Fig. 5e,i

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, P., Donahue, G., Li, C. et al. Spurious intragenic transcription is a feature of mammalian cellular senescence and tissue aging. Nat Aging 3, 402–417 (2023). https://doi.org/10.1038/s43587-023-00384-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43587-023-00384-3

  • Springer Nature America, Inc.

This article is cited by

Navigation