Introduction

Of the most common cancer types, colorectal cancer (CRC) accounts for 9.4% of all cancer deaths worldwide1. Currently, surgery and chemotherapy have significantly improved the survival rates of CRC patients2. However, owing to a lack of efficient clinical treatment and prognostic biomarkers, the overall prognosis of CRC is poor. Moreover, because of tumor heterogeneity, the clinical and histopathological features of tumors cannot currently be used to accurately predict the course of CRC. Therefore, it is critical to identify new prognostic factors and treatment targets for CRC.

Over the past few years, tumor heterogeneity has been shown to be a significant challenge in the treatment and prognosis of cancer. Recently, single-cell RNA sequencing (scRNA-seq) has attracted considerable attention. It allows for the genome-wide analysis of individual cells and makes it possible to understand cellular heterogeneity3,4. Li et al.5 compared the intra-tumor cell heterogeneity between carcinoma and normal tissues in CRC using scRNA-seq. Poonpanichakul et al.6 used a droplet-based scRNA-seq method to profile intra-tumor cell heterogeneity in CRC ascites. However, few studies have been conducted on the cellular heterogeneity of CRC during its evolution from adenoma to carcinoma. In this study, we analyzed the cellular heterogeneity of adenomas and carcinomas by single-cell analysis, and used this information to develop an effective treatment strategy for CRC.

Ferroptosis, an iron-dependent cell death process, is characterized by lipid peroxidation. It is morphologically and mechanistically distinct from the other types of cell death7. Increasing evidence suggests that ferroptosis plays a role in various cancers8. Lu et al.9 found that downregulation of KLF2 inhibits ferroptosis by reducing the transcriptional repression of GPX4 and promoting the invasive activity of renal cell carcinoma. Moreover, because iron metabolism and homeostasis are associated with tumor immunity, they also play a significant role in immunity10. Wang et al.11 demonstrated that the activation of CD8+ T cells could increase ferroptosis and the efficacy of immunotherapy. However, the mechanisms underlying ferroptosis in CRC, and the role that ferroptosis-dependent related genes (FDRGs) of CRC remain unclear. Therefore, it is necessary to understand the pathophysiology and underlying mechanisms of FDRGs in CRC.

In this study, we calculated ferroptosis-dependent gene scores (FerrScores) for different CRC cell types and used them to define FDRGs. We also constructed a prognostic signature for CRC. Our findings may provide a novel therapeutic strategy for CRC.

Methods

Data collection

To compare the cell heterogeneity in colorectal adenoma and carcinoma tissues, we downloaded the GSE161277 CRC sequence library from the Gene Expression Omnibus database (GEO) (http://www.ncbi.nlm.nih.gov/geo/) and selected four colorectal adenoma and four colorectal carcinoma samples (GSM4904234, GSM4904235, GSM4904236, GSM4904238, GSM4904239, GSM4904242, GSM4904243, and GSM4904245) for single-cell analysis12. We also downloaded the RNA-Seq data and relevant clinical information on CRC from the official website of The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/). Furthermore, we obtained the validation dataset GSE17538 from the GEO database. A list of ferroptosis-dependent genes was compiled using the FerrDb website (http://www.zhounan.org/ferrdb/current/).

Processing of sc-RNAseq data

We used the “Seurat” R package (version 4.1.1) and integrated downstream analysis of single-cell transcriptome profiles. The data were quality controlled. Cells with fewer than 300 features and genes expressed in fewer than three cells were excluded. In addition, the proportion of mitochondria was limited to less than 20%. We then normalized the data using the LogNormalization method. We also screened the 2000 highly variable genes with the “FindVariableFeatures” function. Uniform manifold approximation and projection (UMAP) was used for data visualization in 2 dimensions

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71(3), 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Puccini, A. & Lenz, H. J. Colorectal cancer in 2017: Practice-changing updates in the adjuvant and metastatic setting. Nat. Rev. Clin. Oncol. 15(2), 77–78 (2018).

    Article  PubMed  Google Scholar 

  3. Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21(7), 1160–1167 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Meth. 6(5), 377–382 (2009).

    Article  CAS  Google Scholar 

  5. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 49(5), 708–718 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Poonpanichakul, T. et al. Capturing tumour heterogeneity in pre- and post-chemotherapy colorectal cancer ascites-derived cells using single-cell RNA-sequencing. Biosci. Rep. 41(12), BSR20212093 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dixon, S. J. et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 149(5), 1060–1072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, P. et al. Combinative treatment of beta-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics 10(11), 5107–5119 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu, Y. et al. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett. 522, 1–13 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y. et al. Iron metabolism in cancer. Int. J. Mol. Sci. 20(1), 95 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang, W. et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569(7755), 270–274 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng, X. et al. Single-cell transcriptomic profiling unravels the adenoma-initiation role of protein tyrosine kinases during colorectal tumorigenesis. Sign. Transduct. Target Ther. 7(1), 60 (2022).

    Article  CAS  Google Scholar 

  13. McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. ar**v preprint ar**v:180203426 (2018).

  14. Aran, D., Hu, Z. & Butte, A. J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18(1), 220 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hanzelmann, S., Castelo, R. & Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7 (2013).

    Article  Google Scholar 

  16. Tibshirani, R. Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996).

    MathSciNet  MATH  Google Scholar 

  17. Yu, G. et al. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 16(5), 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Galon, J. et al. The immune score as a new possible approach for the classification of cancer. J. Transl. Med. 10, 1 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shimada, K. et al. Frequent genetic alterations in immune checkpoint-related genes in intravascular large B-cell lymphoma. Blood 137(11), 1491–1502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang, F. et al. An immune checkpoint-related gene signature for predicting survival of pediatric acute myeloid leukemia. J. Oncol. 2021, 5550116 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Song, D. et al. A model of seven immune checkpoint-related genes predicting overall survival for head and neck squamous cell carcinoma. Eur. Arch. Otorhinolaryngol. 278(9), 3467–3477 (2021).

    Article  PubMed  Google Scholar 

  22. Tian, M. et al. A novel immune checkpoint-related seven-gene signature for predicting prognosis and immunotherapy response in melanoma. Int. Immunopharmacol. 87, 106821 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Mei, Y. et al. Single-cell analyses reveal suppressive tumor microenvironment of human colorectal cancer. Clin. Transl. Med. 11(6), e422 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ren, J. et al. Development and validation of a metabolic gene signature for predicting overall survival in patients with colon cancer. Clin. Exp. Med. 20(4), 535–544 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Luo, D. et al. Development and validation of a novel epigenetic signature for predicting prognosis in colon cancer. J. Cell. Physiol. 235(11), 8714–8723 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Zhou, Y., Guo, Y. & Wang, Y. Identification and validation of a seven-gene prognostic marker in colon cancer based on single-cell transcriptome analysis. IET Syst. Biol. 16(2), 72–83 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jiang, C. et al. In silico development and clinical validation of novel 8 gene signature based on lipid metabolism related genes in colon adenocarcinoma. Pharmacol. Res. 169, 105644 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Zuo, D. et al. Construction and validation of a metabolic risk model predicting prognosis of colon cancer. Sci. Rep. 11(1), 6837 (2021).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fang, Z. et al. Identification of a prognostic gene signature of colon cancer using integrated bioinformatics analysis. World J. Surg. Oncol. 19(1), 13 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cheng, X. et al. A novel enterocyte-related 4-gene signature for predicting prognosis in colon adenocarcinoma. Front. Immunol. 13, 1052182 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang, W. et al. Prognostic costimulatory molecule-related signature risk model correlates with immunotherapy response in colon cancer. Sci. Rep. 13(1), 789 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qiu, C. et al. Identification of molecular subtypes and a prognostic signature based on inflammation-related genes in colon adenocarcinoma. Front. Immunol. 12, 769685 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng, L., Yang, Y. & Cui, X. Establishing and validating an aging-related prognostic four-gene signature in colon adenocarcinoma. Biomed. Res. Int. 2021, 4682589 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ouyang, S. et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox. Biol. 52, 102317 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guo, J. et al. Ferroptosis: A novel anti-tumor action for cisplatin. Cancer Res Treat. 50(2), 445–460 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  36. Nersisyan, S. et al. ECM-receptor regulatory network and its prognostic role in colorectal cancer. Front. Genet. 12, 782699 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crotti, S. et al. Extracellular matrix and colorectal cancer: How surrounding microenvironment affects cancer cell behavior?. J. Cell Physiol. 232(5), 967–975 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Maltseva, D. V. & Rodin, S. A. Laminins in metastatic cancer. Mol. Biol (Mosk). 52(3), 411–434 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. **e, Q. et al. Tspan5 promotes epithelial-mesenchymal transition and tumour metastasis of hepatocellular carcinoma by activating Notch signalling. Mol. Oncol. 15(11), 3184–3202 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu, H., Zhao, N. & Jiang, M. Isovitexin attenuates tumor growth in human colon cancer cells through the modulation of apoptosis and epithelial-mesenchymal transition via PI3K/Akt/mTOR signaling pathway. Biochem. Cell Biol. 99(6), 741–749 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Gorka, J. et al. MCPIP1 inhibits Wnt/beta-catenin signaling pathway activity and modulates epithelial-mesenchymal transition during clear cell renal cell carcinoma progression by targeting miRNAs. Oncogene 40(50), 6720–6735 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liao, P. et al. CD8(+)T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 40(4), 365-378.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, X. Y. et al. A novel model based on necroptosis-related genes for predicting prognosis of patients with prostate adenocarcinoma. Front. Bioeng. Biotechnol. 9, 814813 (2021).

    Article  PubMed  Google Scholar 

  44. Oshi, M. et al. A novel 4-gene score to predict survival, distant metastasis and response to neoadjuvant therapy in breast cancer. Cancers (Basel) 12(5), 1148 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Shou, Y. et al. TIMP1 indicates poor prognosis of renal cell carcinoma and accelerates tumorigenesis via EMT signaling pathway. Front. Genet. 13, 648134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma, B. et al. TIMP1 promotes cell proliferation and invasion capability of right-sided colon cancers via the FAK/Akt signaling pathway. Cancer Sci. 113(12), 4244–4257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Farrar, J. E. et al. Ribosomal protein gene deletions in diamond-blackfan anemia. Blood 118(26), 6943–6951 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ren, Y. et al. A prognostic model for colon adenocarcinoma patients based on ten amino acid metabolism related genes. Front. Public Health. 10, 916364 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Daugaard, M., Jaattela, M. & Rohde, M. Hsp70-2 is required for tumor cell growth and survival. Cell Cycle 4(7), 877–880 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, Q. et al. LASP1 promotes proliferation, metastasis, invasion in head and neck squamous cell carcinoma and through direct interaction with HSPA1A. J. Cell. Mol. Med. 24(2), 1626–1639 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, L. et al. MANF ameliorates DSS-induced mouse colitis via restricting Ly6C(hi)CX3CR1(int) macrophage transformation and suppressing CHOP-BATF2 signaling pathway. Acta Pharmacol. Sin. 44(6), 1175–1190 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, L. et al. Circular RNA hsa_circ_0004277 contributes to malignant phenotype of colorectal cancer by sponging miR-512–5p to upregulate the expression of PTMA. J. Cell. Physiol. https://doi.org/10.1002/jcp.29484 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge each editor and reviewer for their efforts on this study.

Author information

Authors and Affiliations

Authors

Contributions

X.X. and X.Z. designed the study and wrote the manuscript. Q.L. and Y.Q. performed the analysis. Y.L. collected the dataset. W.T. reviewed and revised the manuscript.

Corresponding author

Correspondence to Weizhong Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhang, X., Lin, Q. et al. Integrated single-cell and bulk RNA sequencing analysis identifies a prognostic signature related to ferroptosis dependence in colorectal cancer. Sci Rep 13, 12653 (2023). https://doi.org/10.1038/s41598-023-39412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-023-39412-y

  • Springer Nature Limited