Log in

Stereospecific alkenylidene homologation of organoboronates by SNV reaction

  • Article
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Concerted nucleophilic substitution, known as SN2 reaction, is a fundamental organic transformation used in synthesis to introduce new functional groups and construct carbon–carbon and carbon–heteroatom bonds1. SN2 reactions typically involve backside attack of a nucleophile to the σ* orbital of a C(sp3)–X bond (X = halogen or other leaving group), resulting in complete inversion of a stereocentre2. By contrast, the corresponding stereoinvertive nucleophilic substitution on electronically unbiased sp2 vinyl electrophiles, namely concerted SNV(σ) reaction, is much rarer, and so far limited to carefully designed substrates mostly in ring-forming processes3,4. Here we show that concerted SNV reactions can be accelerated by a proposed strain-release mechanism in metallated complexes, leading to the development of a general and stereospecific alkenylidene homologation of diverse organoboronates. This method enables the iterative incorporation of multiple alkenylidene units, giving cross-conjugated polyenes that are challenging to prepare otherwise. Further application to the synthesis of bioactive compounds containing multi-substituted alkenes is also demonstrated. Computational studies suggest an unusual SN2-like concerted pathway promoted by diminishing steric strain in the square planar transition state, which explains the high efficiency and stereoinversive feature of this metallate SNV reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1: Concerted SNV reactions.
Fig. 2: Reaction discovery and mechanistic studies.
Fig. 3: Alkenylidenoid scope for stereospecific alkenylidene homologation.
Fig. 4: Boronate scope for alkenylidene homologation.
Fig. 5: Iterative alkenylidene homologation.

Data availability

All the data generated or analyzed during this study are included in this article and its Supplementary Information. Crystallographic data for the structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2342622 (Z-3a), CCDC 2341268 (E-Ate-2b–HQ), CCDC 2342623 (Z-3c), CCDC 2342625 (E-3c). These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service (www.ccdc.cam.ac.uk/structures).

References

  1. Smith, M. & March, J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (John Wiley & Sons, 2020).

  2. Carey, F. A. & Sundberg, R. J. Advanced Organic Chemistry: Part A: Structure and Mechanisms (Springer Science+Business Media, 2007).

  3. Bernasconi, C. F. & Rappoport, Z. Recent advances in our mechanistic understanding of SNV reactions. Acc. Chem. Res. 42, 993–1003 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Narasaka, K., Chiba, S. & Ando, K. Concerted nucleophilic substitution reactions at vinylic carbons. Synlett 2009, 2549–2564 (2009).

    Article  Google Scholar 

  5. Miller, S. I. & Yonan, P. K. The displacement reaction of haloalkenes with iodide ion. A survey of reactivity and mechanism. J. Am. Chem. Soc. 79, 5931–5937 (1957).

    Article  CAS  Google Scholar 

  6. Collins, J. B. et al. Stabilization of planar tetracoordinate carbon. J. Am. Chem. Soc. 98, 5419–5427 (1976).

    Article  CAS  Google Scholar 

  7. Hoffmann, R., Alder, R. W. & Wilcox, C. F. Planar tetracoordinate carbon. J. Am. Chem. Soc. 92, 4992–4993 (1970).

    Article  CAS  Google Scholar 

  8. Fernández, I., Bickelhaupt, F. M. & Uggerud, E. Reactivity in nucleophilic vinylic substitution (SNV): SNVπ versus SNVσ mechanistic dichotomy. J. Org. Chem. 78, 8574–8584 (2013).

    Article  PubMed  Google Scholar 

  9. Okuyama, T. & Lodder, G. Nucleophilic vinylic substitution and vinyl cation intermediates in the reactions of vinyl iodonium salts. Adv. Phys. Org. Chem. 37, 1–56 (2002).

  10. Zhang, G. et al. Silver-promoted synthesis of vinyl sulfones from vinyl bromides and sulfonyl hydrazides in water. Chem. Commun. 56, 4688–4691 (2020).

    Article  CAS  Google Scholar 

  11. Lei, M. Y. et al. Nucleophilic substitution reaction at an sp2 carbon of vinyl halides with an intramolecular thiol moiety: synthesis of thio-heterocycles. Tetrahedron 65, 6888–6902 (2009).

    Article  CAS  Google Scholar 

  12. Zweifel, G. & Arzoumanian, H. α-Halovinylboranes. Their preparation and conversion into cis-halovinylboranes, trans-olefins, ketones, and trans-vinylboranes. J. Am. Chem. Soc. 89, 5086–5088 (1967).

    Article  CAS  Google Scholar 

  13. Brown, H. C., Imai, T. & Bhat, N. G. Vinylic organoboranes. 7. stereoselective synthesis of (E)-(1-substituted-1-alkenyl)boronic esters by the nucleophilic substitution of (Z)-(1-bromo-1-alkenyl)boronic esters with organolithium or Grignard reagents. isolation and oxidation to ketones. J. Org. Chem. 51, 5277–5282 (1986).

    Article  CAS  Google Scholar 

  14. Brown, H. C. & Soundararajan, R. A convenient synthesis of β,γ-unsaturated ketones via allylation of Z-1-halo-1-alkenyl-1,3,2-dioxaborolane. Tetrahedron Lett. 35, 6963–6966 (1994).

    Article  CAS  Google Scholar 

  15. Hata, T. et al. Geminal difunctionalization of alkenylidene-type carbenoids by using interelement compounds. Angew. Chem. Int. Ed. 40, 790–792 (2001).

    Article  CAS  Google Scholar 

  16. Negishi, E., Akiyoshi, K., O’Connor, B., Takagi, K. & Wu, G. Migratory insertion reactions of organometallics. 3. carbon-carbon bond forming reactions of organotransition metals with α- or γ-haloorganolithium reagents. J. Am. Chem. Soc. 111, 3089–3091 (1989).

    Article  CAS  Google Scholar 

  17. Kasatkin, A. & Whitby, R. J. Insertion of 1-chloro-1-lithioalkenes into organozirconocenes. A versatile synthesis of stereodefined unsaturated systems. J. Am. Chem. Soc. 121, 7039–7049 (1999).

    Article  CAS  Google Scholar 

  18. Harada, T., Hara, D., Hattori, K. & Oku, A. Generation and alkylation reaction of 1-bromoalkenylzincate. Tetrahedron Lett. 29, 3821–3824 (1988).

    Article  CAS  Google Scholar 

  19. Harada, T. et al. Reactions of 1,1-dihaloalkenes with triorganozincates: a novel method for the preparation of alkenylzinc species associated with carbon-carbon bond formation. J. Org. Chem. 58, 4897–4907 (1993).

    Article  CAS  Google Scholar 

  20. Miller, J. A. An unprecedented intramolecular migration of carbon groups from aluminum to an adjacent vinylic center and its application to the synthesis of stereodefined olefins. J. Org. Chem. 54, 998–1000 (1989).

    Article  CAS  Google Scholar 

  21. Pace, V. Homologation reactions: Reagents, Applications, and Mechanisms (Wiley-VCH, 2023).

  22. Xu, S., Lee, C., Rao, H. & Negishi, E. Highly (≥98%) stereo‐ and regioselective trisubstituted alkene synthesis of wide applicability via 1‐halo‐1‐alkyne hydroboration–tandem Negishi–Suzuki coupling or organoborate migratory insertion. Adv. Synth. Catal. 353, 2981–2987 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Castoldi, L., Monticelli, S., Senatore, R., Ielo, L. & Pace, V. Homologation chemistry with nucleophilic α-substituted organometallic reagents: chemocontrol, new concepts and (solved) challenges. Chem. Commun. 54, 6692–6704 (2018).

    Article  CAS  Google Scholar 

  24. Matteson, D. S. α-Halo boronic esters: intermediates for stereodirected synthesis. Chem. Rev. 89, 1535–1551 (1989).

    Article  CAS  Google Scholar 

  25. Matteson, D. S., Collins, B. S. L., Aggarwal, V. K. & Ciganek, E. The Matteson reaction. Org. React. 105, 427–860 (2021).

    Google Scholar 

  26. Blakemore, P. R. & Burge, M. S. Iterative stereospecific reagent-controlled homologation of pinacol boronates by enantioenriched α-chloroalkyllithium reagents. J. Am. Chem. Soc. 129, 3068–3069 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Blieck, R. & de la Torre, A. 1,2‐boronate rearrangement: an efficient tool for the opening, functionalization and formation of strained cycles. Eur. J. Org. Chem. 2022, e202200920 (2022).

    Article  CAS  Google Scholar 

  28. Chen, M., Tugwell, T. H., Liu, P. & Dong, G. Synthesis of alkenyl boronates through stereoselective vinylene homologation of organoboronates. Nat. Synth. 3, 337–346 (2024).

    Article  ADS  Google Scholar 

  29. Aparece, M. D., Gao, C., Lovinger, G. J. & Morken, J. P. Vinylidenation of organoboronic esters enabled by a Pd‐catalyzed metallate shift. Angew. Chem. Int. Ed. 58, 592–595 (2019).

    Article  CAS  Google Scholar 

  30. Fordham, J. M., Grayson, M. N. & Aggarwal, V. K. Vinylidene homologation of boronic esters and its application to the synthesis of the proposed structure of machillene. Angew. Chem. Int. Ed. 58, 15268–15272 (2019).

    Article  CAS  Google Scholar 

  31. Flynn, A. B. & Ogilvie, W. W. Stereocontrolled synthesis of tetrasubstituted olefins. Chem. Rev. 107, 4698–4745 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, J., Dong, Z., Yang, C. & Dong, G. Modular and regioselective synthesis of all-carbon tetrasubstituted olefins enabled by an alkenyl Catellani reaction. Nat. Chem. 11, 1106–1112 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buttard, F., Sharma, J. & Champagne, P. A. Recent advances in the stereoselective synthesis of acyclic all-carbon tetrasubstituted alkenes. Chem. Commun. 57, 4071–4088 (2021).

    Article  CAS  Google Scholar 

  34. Negishi, E. et al. Recent advances in efficient and selective synthesis of di-, tri-, and tetrasubstituted alkenes via Pd-catalyzed alkenylation−carbonyl olefination synergy. Acc. Chem. Res. 41, 1474–1485 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Sherburn, M. S. Preparation and synthetic value of π-bond-rich branched hydrocarbons. Acc. Chem. Res. 48, 1961–1970 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Y., Noble, A., Myers, E. L. & Aggarwal, V. K. Enantiospecific alkynylation of alkylboronic esters. Angew. Chem. Int. Ed. 128, 4342–4346 (2016).

    Article  ADS  Google Scholar 

  37. Ensing, B., De Vivo, M., Liu, Z., Moore, P. & Klein, M. L. Metadynamics as a tool for exploring free energy landscapes of chemical reactions. Acc. Chem. Res. 39, 73–81 (2005).

    Article  Google Scholar 

  38. Fu, Y., Bernasconi, L. & Liu, P. Ab initio molecular dynamics simulations of the SN1/SN2 mechanistic continuum in glycosylation reactions. J. Am. Chem. Soc. 143, 1577–1589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Black, K., Liu, P., Xu, L., Doubleday, C. & Houk, K. N. Dynamics, transition states, and timing of bond formation in Diels–Alder reactions. Proc. Natl Acad. Sci. USA 109, 12860–12865 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  40. Jiménez‐Osés, G., Liu, P., Matute, R. A. & Houk, K. N. Competition between concerted and stepwise dynamics in the triplet di‐π‐methane rearrangement. Angew. Chem. Int. Ed. 53, 8664–8667 (2014).

    Article  Google Scholar 

  41. Topolski, M. et al. Chiral carbenoids: their formation and reactions. J. Org. Chem. 58, 546–555 (1993).

    Article  CAS  Google Scholar 

  42. Brown, W., Griffin, A. & Walpole, C. Diarylmethylidene piperidine derivatives, preparations thereof and uses thereof. WIPO patent WO2004063157 (2004).

  43. Kamei, T., Itami, K. & Yoshida, J. Catalytic carbometalation/cross‐coupling sequence across alkynyl(2‐pyridyl)silanes leading to a diversity‐oriented synthesis of tamoxifen‐type tetrasubstituted olefins. Adv. Synth. Catal. 346, 1824–1835 (2004).

    Article  CAS  Google Scholar 

  44. Fay, L. K. et al. Biaryl ether urea compounds. WIPO patent WO2008047229A2 (2007).

  45. Wei, Z. Y. et al. N,N-diethyl-4-(phenylpiperidin-4-ylidenemethyl)benzamide: a novel, exceptionally selective, potent δ opioid receptor agonist with oral bioavailability and its analogues. J. Med. Chem. 43, 3895–3905 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Brown, W., Walpole, C. & Wei, Z. 4-(phenyl-piperidin-4-ylidene-methyl)-benzamide derivatives and their use for the treatment of pain, anxiety or gastrointestinal disorders. WIPO patent WO2002094810A1 (2002).

  47. Boehm, M. F. et al. Synthesis and structure-activity relationships of novel retinoid X receptor-selective retinoids. J. Med. Chem. 37, 2930–2941 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Yoshida, H., Takemoto, Y. & Takaki, K. A masked diboron in Cu-catalysed borylation reaction: Highly regioselective formal hydroboration of alkynes for synthesis of branched alkenylborons. Chem. Commun. 50, 8299–8302 (2014).

    Article  CAS  Google Scholar 

  49. Britton, J. E. et al. Cycloalkylidene compounds as modulators of estrogen receptor. WIPO patent WO2005012220A2 (2005).

  50. Tandon, N., Luxami, V., Tandon, R. & Paul, K. Recent advances in the synthesis of tamoxifen and analogues in medicinal chemistry. Asian J. Org. Chem. 9, 1432–1465 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

University of Chicago, ACS PRF (65249-ND1 to G.D.) and NIGMS (R35GM128779 to P.L.) are acknowledged for research support. We thank Z. Zhang (University of Chicago) and X. Liu (University of Chicago) for X-ray crystallography, J. Kurutz (University of Chicago) for variable temperature NMR experiments, O. Mora (Lane Tech High School) for collecting high-resolution mass spectrometry and infrared spectra of some samples, and Y. Ge (University of Chicago) for checking the experimental procedure. Computational studies were performed at the Center for Research Computing at the University of Pittsburgh and the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) programme, supported by NSF award numbers OAC-2117681 and OAC-2138259.

Author information

Authors and Affiliations

Authors

Contributions

G.D. and M.C. conceived and designed the experiments. M.C. and C.L. performed the experiments and analysed the data. P.L., C.D.K., M.C.M. and T.H.T. conceived and designed the computational studies. C.D.K., M.C.M. and T.H.T. performed the computational studies. M.C., C.D.K., M.C.M., T.H.T., P.L. and G.D. prepared the manuscript together.

Corresponding authors

Correspondence to Peng Liu or Guangbin Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Qiuling Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Applications in modular synthesis of biologically important compounds containing multi-substituted alkenes.

The overall yields for each final product were calculated based on the starting boronates. See Supplementary Information for experimental details.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data Sections 1–12; see contents page for details.

Supplementary Data 1

This file contains the XRD data of E-3c.

Supplementary Data 2

This file contains the XRD data of Z-3c.

Supplementary Data 3

This file contains the XRD data of Z-3a.

Supplementary Data 4

This file contains the XRD data of E-Ate-2b–HQ.

Supplementary Video 1

An AIMD trajectory of the concerted SNV reaction. AIMD trajectory of the 1,2-migration of alkenyl boronate Ate-2l to form 4a-Neop in explicit Et2O solution. The trajectory was created from two separate simulations from pre-equilibrated TS-2l, one going back to reactant Ate-2l, while the other progressing forward to product 4a-Neop.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Knox, C.D., Madhusudhanan, M.C. et al. Stereospecific alkenylidene homologation of organoboronates by SNV reaction. Nature 631, 328–334 (2024). https://doi.org/10.1038/s41586-024-07579-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07579-7

  • Springer Nature Limited

Navigation