Log in

Light-induced magnetism in plasmonic gold nanoparticles

  • Letter
  • Published:

From Nature Photonics

View current issue Submit your manuscript

Abstract

Strategies for the ultrafast optical control of magnetism have been a topic of intense research for several decades because of the potential impact in technologies such as magnetic memory1, spintronics2 and quantum computation, as well as the opportunities for nonlinear optical control and modulation3 in applications such as optical isolation and non-reciprocity4. Here we report experimental quantification of optically induced magnetization in plasmonic gold nanoparticles due to the inverse Faraday effect. The induced magnetic moment is large under typical ultrafast pulse excitation (<1014 W m−2 peak intensity), with magnetization and demagnetization kinetics that are instantaneous within the subpicosecond time resolution of our study. Our results support a mechanism of coherent transfer of angular momentum from the optical field to the electron gas, and open the door to all-optical subwavelength strategies for optical isolation that do not require externally applied magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schematic of the Faraday effect and the IFE in AuNP colloids.
Fig. 2: Static Faraday rotation of 100-nm-diameter AuNPs.
Fig. 3: Time-resolved pump–probe IFE experiment on 100-nm-diameter AuNPs.
Fig. 4: IFE experiment with counter-propagating pump and probe beams.
Fig. 5: Dependence of optical rotation on pump intensity for case II and the corresponding effective magnetic field.

Similar content being viewed by others

Data availability

Source data for Figs. 25 are provided. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  ADS  Google Scholar 

  2. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  ADS  Google Scholar 

  3. Chai, Z. et al. Ultrafast all-optical switching. Adv. Opt. Mater. 5, 1600665 (2017).

    Article  Google Scholar 

  4. Sounas, D. L. & Alù, A. Non-reciprocal photonics based on time modulation. Nat. Photon. 11, 774–783 (2017).

    Article  ADS  Google Scholar 

  5. van der Ziel, J. P., Pershan, P. S. & Malmstrom, L. D. Optically-induced magnetization resulting from the inverse Faraday effect. Phys. Rev. Lett. 15, 190–193 (1965).

    Article  ADS  Google Scholar 

  6. Mikhaylovskiy, R. V., Hendry, E. & Kruglyak, V. V. Ultrafast inverse Faraday effect in a paramagnetic terbium gallium garnet crystal. Phys. Rev. B 86, 100405 (2012).

    Article  ADS  Google Scholar 

  7. Raja, M. Y. A., Allen, D. & Sisk, W. Room‐temperature inverse Faraday effect in terbium gallium garnet. Appl. Phys. Lett. 67, 2123–2125 (1995).

    Article  ADS  Google Scholar 

  8. Belotelov, V. I., Bezus, E. A., Doskolovich, L. L., Kalish, A. N. & Zvezdin, A. K. Inverse Faraday effect in plasmonic heterostructures. J. Phys. Conf. Ser. 200, 092003 (2010).

    Article  Google Scholar 

  9. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article  ADS  Google Scholar 

  10. Hertel, R. Theory of the inverse Faraday effect in metals. J. Magn. Magn. Mater. 303, L1–L4 (2006).

    Article  ADS  Google Scholar 

  11. Singh, N. D., Moocarme, M., Edelstein, B., Punnoose, N. & Vuong, L. T. Anomalously-large photo-induced magnetic response of metallic nanocolloids in aqueous solution using a solar simulator. Opt. Express 20, 19214–19225 (2012).

    Article  ADS  Google Scholar 

  12. Nadarajah, A. & Sheldon, M. T. Optoelectronic phenomena in gold metal nanostructures due to the inverse Faraday effect. Opt. Express 25, 12753–12764 (2017).

    Article  ADS  Google Scholar 

  13. Hurst, J., Oppeneer, P. M., Manfredi, G. & Hervieux, P.-A. Magnetic moment generation in small gold nanoparticles via the plasmonic inverse Faraday effect. Phys. Rev. B 98, 134439 (2018).

    Article  ADS  Google Scholar 

  14. Gu, Y. & Kornev, K. G. Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites. J. Opt. Soc. Am. B 27, 2165–2173 (2010).

    Article  ADS  Google Scholar 

  15. Jain, P. K., **ao, Y., Walsworth, R. & Cohen, A. E. Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals.pdf. Nano Lett. 9, 1644–1650 (2009).

    Article  ADS  Google Scholar 

  16. Svirko, Y. P. & Zheludev, N. I. Coherent and incoherent pump–probe specular inverse Faraday effect in media with instantaneous nonlinearity. J. Opt. Soc. Am. B 11, 1388–1393 (1994).

    Article  ADS  Google Scholar 

  17. Zheludev, N. I. et al. Cubic optical nonlinearity of free electrons in bulk gold. Opt. Lett. 20, 1368–1370 (1995).

    Article  ADS  Google Scholar 

  18. Hertel, R. & Fähnle, M. Macroscopic drift current in the inverse Faraday effect. Phys. Rev. B 91, 020411 (2015).

    Article  ADS  Google Scholar 

  19. Wysin, G. M., Chikan, V., Young, N. & Dani, R. K. Effects of interband transitions on Faraday rotation in metallic nanoparticles. J. Phys. Condens. Matter 25, 325302 (2013).

    Article  Google Scholar 

  20. Berritta, M., Mondal, R., Carva, K. & Oppeneer, P. M. Ab initio theory of coherent laser-induced magnetization in metals. Phys. Rev. Lett. 117, 137203 (2016).

    Article  ADS  Google Scholar 

  21. Beaurepaire, E., Merle, J., Daunois, A. & Bigot, J. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  ADS  Google Scholar 

  22. Chen, T.-Y., Hsia, C.-H., Chen, H.-Y. & Son, D. H. Size effect on chemical tuning of spin−lattice relaxation dynamics in superparamagnetic nanocrystals. J. Phys. Chem. C 114, 9713–9719 (2010).

    Article  Google Scholar 

  23. Chin, J. Y. et al. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nat. Commun. 4, 1599 (2013).

    Article  ADS  Google Scholar 

  24. Gevorkian, Z. & Gasparian, V. Plasmon-enhanced Faraday rotation in thin films. Phys. Rev. A 89, 023830 (2014).

    Article  ADS  Google Scholar 

  25. Yuan, Sh & Shu, X. Z. A new Faraday rotation glass with a large Verdet constant. J. Appl. Phys. 75, 6375–6377 (1994).

    Article  ADS  Google Scholar 

  26. McGroddy, J. C., McAlister, A. J. & Stern, E. A. Polar reflection Faraday effect in silver and gold. Phys. Rev. 139, A1844–A1848 (1965).

    Article  ADS  Google Scholar 

  27. Svirko, Y. P. & Zheludev, N. I. Polarization of Light in Nonlinear Optics (Wiley, 1998).

  28. Wilks, R., Hughes, N. D. & Hicken, R. J. Investigation of transient linear and circular birefringence in metallic thin films. J. Phys. Condens. Matter 15, 5129–5143 (2003).

    Article  Google Scholar 

  29. Kruglyak, V. V. et al. Ultrafast third-order optical nonlinearity of noble and transition metal thin films. J. Opt. A 7, S235–S240 (2005).

    Article  Google Scholar 

  30. Kruglyak, V. V. et al. Measurement of hot electron momentum relaxation times in metals by femtosecond ellipsometry. Phys. Rev. B 71, 233104 (2005).

    Article  ADS  Google Scholar 

  31. Hsia, C.-H., Chen, T.-Y. & Son, D. H. Size-dependent ultrafast magnetization dynamics in iron oxide (Fe3O4) nanocrystals. Nano Lett. 8, 571–576 (2008).

    Article  ADS  Google Scholar 

  32. Bossini, D., Belotelov, V. I., Zvezdin, A. K., Kalish, A. N. & Kimel, A. V. Magnetoplasmonics and femtosecond optomagnetism at the nanoscale. ACS Photon. 3, 1385–1400 (2016).

    Article  Google Scholar 

  33. Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 13, 286–292 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the technical support of D. Rossi. This work was funded in part by the Gordon and Betty Moore Foundation through grant no. GBMF6882 and by the Air Force Office of Scientific Research under award no. FA9550-16-1-0154. M.S. also acknowledges support from the Welch Foundation (A-1886). D.H.S. appreciates support from the Institute for Basic Science (IBS-R026-D1).

Author information

Authors and Affiliations

Authors

Contributions

O.H.-C.C. carried out the measurements and analysed the data. D.H.S. and M.S. supervised the project and participated in the analysis of the data.

Corresponding authors

Correspondence to Dong Hee Son or Matthew Sheldon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Discussion Sections 1–8 and Table 1.

Source data

Source Data Fig. 2

Numerical data for extinction spectra and Faraday rotation.

Source Data Fig. 3

Numerical data for figure.

Source Data Fig. 4

Numerical data for figure.

Source Data Fig. 5

Numerical data for figure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, O.HC., Son, D.H. & Sheldon, M. Light-induced magnetism in plasmonic gold nanoparticles. Nat. Photonics 14, 365–368 (2020). https://doi.org/10.1038/s41566-020-0603-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0603-3

  • Springer Nature Limited

Navigation