Introduction

Enzymes-inspired catalysts composed of active sites and protein binding pockets interacting with a substrate have been a long-standing goal of heterogeneous catalysis (Fig. 1a)1,2,3. Such artificial analogs require the synthesis of spatial structures with suitable electronic properties4,5. There has been increasing emphasis on tuning the environment of active sites at the nanoscale5,6,7 for instance, metal−organic frameworks (MOFs) with tailorable coordination building blocks8,9. For example, UiO-66 modified with poly(dimethylsiloxane) (PDMS) becomes hydrophobic and enhances the concentration of certain organic substrates and the activity10. The accurate control of reactions by engineering the active site environment has recently been reviewed8. Engineering single-atom catalysts through the local coordination and electronic state of the catalytic center is another class of tunable heterogeneous catalysts11. Beyond geometric structure, it is even more desirable to mimic the promotion mechanism of enzymes by tuning the weak interactions between the reactant and the environment12. Hydrogen bond plays a key role in enzyme catalysis especially for low-barrier hydrogenations13. For example, the amino acid residue in the human transketolase at position 366 could form a crucial hydrogen bond with the N1 in the substrate thiamine (Fig. 1c)14. Due to the lack of structural precision in synthesizing traditional solid catalysts, mimicking the weak interaction to modulate catalytic reactions remains challenging. The precise control of the active site environment requires unambiguous binding motifs to enable the incorporation of catalytic active sites, well-adjustable chemical composition with specific functional groups, high surface area with hierarchical porosity for fast mass transfer, and a stable catalyst during the reaction and recycling. Porous organic polymers (POPs) are multi-dimensional porous network materials built via strong covalent linkages between various organic building blocks. They have recently emerged as versatile, tailorable materials15 with unique 3D porous structure, by changing the monomer or the functional groups. For example, by encapsulating metal nanocrystals in amine-based POPs, Cargnello’s group found a transition in the Pd-catalyzed CO oxidation16,17. ** of different elements of Ir-HCP-OH. i HR-TEM images of Ir particles.