Introduction

Room-temperature phosphorescence (RTP) is luminescence that originates from the radiative transition from excited triplet state to ground state. Traditional inorganic RTP materials, which typically require noble or rare earth metals, have some intrinsic problems, including high cost, potential toxicity, and instability in aqueous environments1,2,3. It is thus essential to develop environmentally friendly, metal-free pure organic RTP materials4,5. Quantum yield and lifetime are the two critical indices for evaluating the performance of RTP materials. Thanks to the enthusiasm of many scientists, pure organic RTP systems with strong emission and long afterglow have been developed using many different strategies, including crystal engineering6,7,8,9, host-guest interactions10, H-aggregation11,12,13, and polymer-matrix assistance14. Smart-responsive RTP materials, in which the RTP responds to external stimuli, have been described less often but are attracting increasing attention because of their widespread applications in sensing15, imaging16,17,18, and anticounterfeiting

Data availability

All the data supporting the findings in this work are available within the manuscript and Supplementary information file. Source data are available for Figs. 25 in the associated source data file. Source data are provided with this paper.

References

  1. Li, D. et al. Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host-guest and dual-emission strategy. J. Am. Chem. Soc. 140, 1916–1923 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Kabe, R., Notsuka, N., Yoshida, K. & Adachi, C. Afterglow organic light-emitting diode. Adv. Mater. 28, 655–660 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Kabe, R. & Adachi, C. Organic long persistent luminescence. Nature 550, 384–387 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Mao, Z. et al. Linearly tunable emission colors obtained from a fluorescent–phosphorescent dual-emission compound by mechanical stimuli. Angew. Chem. Int. Ed. 54, 6270–6273 (2015).

    Article  CAS  Google Scholar 

  5. He, Z. et al. White light emission from a single organic molecule with dual phosphorescence at room temperature. Nat. Commun. 8, 416 (2017).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  6. Yuan, W. Z. et al. Crystallization-induced phosphorescence of pure organic luminogens at room temperature. J. Phys. Chem. C. 114, 6090–6099 (2010).

    Article  CAS  Google Scholar 

  7. Li, C. et al. Reversible luminescence switching of an organic solid: controllable on–off persistent room temperature phosphorescence and stimulated multiple fluorescence conversion. Adv. Opt. Mater. 3, 1184–1190 (2015).

    Article  CAS  Google Scholar 

  8. Mieno, H., Kabe, R., Notsuka, N., Allendorf, M. D. & Adachi, C. Long-lived room-temperature phosphorescence of coronene in zeolitic imidazolate framework ZIF-8. Adv. Opt. Mater. 4, 1015–1021 (2016).

    Article  CAS  Google Scholar 

  9. Shimizu, M. et al. Siloxy group-induced highly efficient room temperature phosphorescence with long lifetime. J. Phys. Chem. C. 120, 11631–11639 (2016).

    Article  CAS  Google Scholar 

  10. Zhang, X. et al. Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nat. Commun. 10, 5161 (2019).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  11. Li, Q. et al. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices. Nat. Commun. 9, 734 (2018).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  12. Bian, L. et al. Simultaneously enhancing efficiency and lifetime of ultralong organic phosphorescence materials by molecular self-assembly. J. Am. Chem. Soc. 140, 10734–10739 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, B. & Yan, D. Hydrogen-bonded two-component ionic crystals showing enhanced long-lived room-temperature phosphorescence via TADF-assisted Förster resonance energy transfer. Adv. Funct. Mater. 29, 1807599 (2019).

    Article  CAS  Google Scholar 

  14. Zhang, G. et al. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J. Am. Chem. Soc. 129, 8942–8943 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. He, G. et al. Coaxing solid-state phosphorescence from tellurophenes. Angew. Chem. Int. Ed. 53, 4587–4591 (2014).

    Article  CAS  Google Scholar 

  16. Zhang, K. Y. et al. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 118, 1770–1839 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Kuzmanich, G. et al. Excited state kinetics in crystalline solids: self-quenching in nanocrystals of 4,4′-disubstituted benzophenone triplets occurs by a reductive quenching mechanism. J. Am. Chem. Soc. 133, 17296–17306 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, G., Palmer, G. M., Dewhirst, M. W. & Fraser, C. L. A dual-emissive materials design concept enables tumour hypoxia imaging. Nat. Mater. 8, 747–751 (2009).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. **ao, L. et al. Highly efficient room-temperature phosphorescence from halogen bonding-assisted doped organic crystals. J. Phys. Chem. A 121, 8652–8658 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Kwon, M. S. et al. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials. Nat. Commun. 6, 8947 (2015).

    Article  PubMed  ADS  CAS  Google Scholar 

  21. Sun, H. et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 5, 3601 (2014).

    Article  PubMed  ADS  CAS  Google Scholar 

  22. Fermi, A., Bergamini, G., Roy, M., Gingras, M. & Ceroni, P. Turn-on phosphorescence by metal coordination to a multivalent terpyridine ligand: a new paradigm for luminescent sensors. J. Am. Chem. Soc. 136, 6395–6400 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Hirata, S., Totani, K., Yamashita, T., Adachi, C. & Vacha, M. Large reverse saturable absorption under weak continuous incoherent light. Nat. Mater. 13, 938–946 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Zheng, X. et al. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nat. Commun. 6, 5834 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Ma, X., Wang, J. & Tian, H. Assembling-Induced emission: an efficient approach for amorphous metal-free organic emitting materials with room-temperature phosphorescence. Acc. Chem. Res. 52, 738–748 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Hirata, S. et al. Efficient persistent room temperature phosphorescence in organic amorphous materials under ambient conditions. Adv. Funct. Mater. 23, 3386–3397 (2013).

    Article  CAS  Google Scholar 

  27. Gong, Y. et al. Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens. Adv. Mater. 27, 6195–6201 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, Y., Lee, J. & Forrest, S. R. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nat. Commun. 5, 5008 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Yang, J., Fang, M. & Li, Z. Stimulus-responsive room temperature phosphorescence in purely organic luminogens. InfoMat 2, 791–806 (2020).

    Article  CAS  Google Scholar 

  30. Li, W. et al. Geometrically isomeric [Ir(iqbt)(ppy)(hpa)] complexes with differential molecule orientations for efficient near-infrared (NIR) polymer light-emitting diodes (PLEDs). J. Mater. Chem. C. 9, 12068–12072 (2021).

    Article  CAS  Google Scholar 

  31. Jiang, Y. et al. Low-threshold organic semiconductor lasers with the aid of phosphorescent Ir(III) complexes as triplet sensitizers. Adv. Funct. Mater. 29, 1806719 (2019).

    Article  CAS  Google Scholar 

  32. Shi, H. et al. Enhancing organic phosphorescence by manipulating heavy-atom interaction. Cryst. Growth Des. 16, 808–813 (2016).

    Article  CAS  Google Scholar 

  33. Kanosue, K. & Ando, S. Polyimides with heavy halogens exhibiting room-temperature phosphorescence with very large stokes shifts. Acs. Macro. Lett. 5, 1301–1305 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, Z. et al. Intermolecular electronic coupling of organic units for efficient persistent room-temperature phosphorescence. Angew. Chem. Int. Ed. 55, 2181–2185 (2016).

    Article  CAS  Google Scholar 

  35. Chen, X. et al. Versatile room-temperature-phosphorescent materials prepared from n-substituted naphthalimides: emission enhancement and chemical conjugation. Angew. Chem. Int. Ed. 55, 9872–9876 (2016).

    Article  CAS  Google Scholar 

  36. Bendikov, M., Wudl, F. & Perepichka, D. F. Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem. Rev. 104, 4891–4946 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Uoyama, H. et al. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Yap, B. K. et al. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nat. Mater. 7, 376–380 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Jia, C. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 352, 1443–1445 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Kobatake, S. et al. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Leydecker, T. et al. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769–775 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Liang, Z. et al. A smart “off–on” gate for the in situ detection of hydrogen sulphide with Cu(II)-assisted europium emission. Chem. Sci. 7, 2151–2156 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, J. et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun. 9, 840 (2018).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  44. De Sa Pereira, D. et al. The effect of a heavy atom on the radiative pathways of an emitter with dual conformation, thermally-activated delayed fluorescence and room temperature phosphorescence. J. Mater. Chem. C. 7, 10481–10490 (2019).

    Article  Google Scholar 

  45. **e, Y. et al. How the molecular packing affects the room temperature phosphorescence in pure organic compounds: ingenious molecular design, detailed crystal analysis, and rational theoretical calculations. Adv. Mater. 29, 1606829 (2017).

  46. Gan, N. et al. Manipulating the stacking of triplet chromophores in the crystal form for ultralong organic phosphorescence. Angew. Chem. Int. Ed. 58, 14140–14145 (2019).

    Article  CAS  Google Scholar 

  47. Kishimura, A., Yamashita, T., Yamaguchi, K. & Aida, T. Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events. Nat. Mater. 4, 546–549 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Bolton, O., Lee, K., Kim, H. J., Lin, K. Y. & Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 3, 415–415 (2011).

    Article  CAS  Google Scholar 

  49. Zhao, W. et al. Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chem 1, 592–602 (2016).

    Article  CAS  Google Scholar 

  50. Mei, J., Leung, N. L. C., Kwok, R. T. K., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Smith, T. & Guild, J. The C.I.E. colorimetric standards and their use. Trans. Opt. Soc. 33, 73 (1931).

    Article  Google Scholar 

  52. Becker, R. S. Theory and Interpretation of Fluorescence and Phosphorecence, 218 (Wiley Interscience, 1969).

  53. Wagner, P. J., May, M. J., Haug, A. & Graber, D. R. Phosphorescence of phenyl alkyl ketones. J. Am. Chem. Soc. 92, 5269–5270 (1970).

    Article  CAS  Google Scholar 

  54. Chen, Y.-H. et al. Insight into the mechanism and outcoupling enhancement of excimer-associated white light generation. Chem. Sci. 7, 3556–3563 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo, M. et al. Integrating time-resolved imaging information by single-luminophore dual thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 59, 17018–17025 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.Z.T. gratefully acknowledges support from NSFC/China (21700102), Z.-Q.Y. thanks the support from NSFC/China (21875143) and Innovation Research Foundation of Shenzhen (JCYJ20180507182229597), Y.W. thanks the support from NSFC/China (21908146), W.Z. thanks the support from Shanghai Pujiang Program (20PJ1402900), Shanghai Science and Technology Commission Basic Project-Shanghai Natural Science Foundation (21ZR1418400). Z.H. thanks the support from Innovation Research Foundation of Shenzhen (GXWD20201230155427003-20200728150952003). Special thanks to the Instrumental Analysis Center of Shenzhen University (Lihu Campus).

Author information

Authors and Affiliations

Authors

Contributions

Y.W., Z.-Q.Y., and B.Z.T. conceived the project and designed the experiments. X.W.L., W.Z., Y.W., X.Q., Y.R., and Z.-Q.Y. were primarily responsible for the data collection and analysis. X.W.L., W.Z., Y.W., Z.M., and Z.H. analyzed the RTP data. X.W.L., W.Z., and Y.W. prepared the figures and wrote the original manuscript text. Y.W., Z.-Q.Y., and B.Z.T. completed the manuscript. All the authors contributed to the discussions and manuscript preparation.

Corresponding authors

Correspondence to Yue Wu, Zhen-Qiang Yu or Ben Zhong Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Benedetta Carlotti and Manman Fang for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X.W., Zhao, W., Wu, Y. et al. Photo-thermo-induced room-temperature phosphorescence through solid-state molecular motion. Nat Commun 13, 3887 (2022). https://doi.org/10.1038/s41467-022-31481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-022-31481-3

  • Springer Nature Limited