Log in

Thymidylate synthase O-GlcNAcylation: a molecular mechanism of 5-FU sensitization in colorectal cancer

  • Article
  • Published:
Oncogene Submit manuscript

Abstract

Alteration of O-GlcNAcylation, a dynamic posttranslational modification, is associated with tumorigenesis and tumor progression. Its role in chemotherapy response is poorly investigated. Standard treatment for colorectal cancer (CRC), 5-fluorouracil (5-FU), mainly targets Thymidylate Synthase (TS). TS O-GlcNAcylation was reported but not investigated yet. We hypothesize that O-GlcNAcylation interferes with 5-FU CRC sensitivity by regulating TS. In vivo, we observed that combined 5-FU with Thiamet-G (O-GlcNAcase (OGA) inhibitor) treatment had a synergistic inhibitory effect on grade and tumor progression. 5-FU decreased O-GlcNAcylation and, reciprocally, elevation of O-GlcNAcylation was associated with TS increase. In vitro in non-cancerous and cancerous colon cells, we showed that 5-FU impacts O-GlcNAcylation by decreasing O-GlcNAc Transferase (OGT) expression both at mRNA and protein levels. Reciprocally, OGT knockdown decreased 5-FU-induced cancer cell apoptosis by reducing TS protein level and activity. Mass spectrometry, mutagenesis and structural studies mapped O-GlcNAcylated sites on T251 and T306 residues and deciphered their role in TS proteasomal degradation. We reveal a crosstalk between O-GlcNAcylation and 5-FU metabolism in vitro and in vivo that converges to 5-FU CRC sensitization by stabilizing TS. Overall, our data propose that combining 5-FU-based chemotherapy with Thiamet-G could be a new way to enhance CRC response to 5-FU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: O-GlcNAcylation sensitizes CRC to 5-FU chemotherapy in vivo.
Fig. 2: 5-FU decreases OGT and O-GlcNAcylation levels in noncancerous and cancerous cells.
Fig. 3: Knockdown of OGT reduces 5-FU sensitivity of cancer cells by decreasing TS target levels.
Fig. 4: OGT interacts with and O-GlcNAcylates TS.
Fig. 5: O-GlcNAcylation at T251 and T306 increases TS stability by preventing its proteasomal degradation.
Fig. 6: O-GlcNAcylation at T251 and T306 increases TS dimer stabilization by generating intra- and inter-monomer interactions.

Similar content being viewed by others

Data availability

Microarray GSE104645 data are available in the Gene Expression Omnibus (GEO) repository.

References

  1. Ishikawa M, Miyauchi T, Kashiwagi Y. Clinical implications of thymidylate synthetase, dihydropyrimidine dehydrogenase and orotate phosphoribosyl transferase activity levels in colorectal carcinoma following radical resection and administration of adjuvant 5-FU chemotherapy. BMC Cancer. 2008;8:188.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kristensen MH, Weidinger M, Bzorek M, Pedersen PL, Mejer J. Correlation between thymidylate synthase gene variants, RNA and protein levels in primary colorectal adenocarcinomas. J Int Med Res. 2010;38:484–97.

    Article  CAS  PubMed  Google Scholar 

  3. Palmirotta R, Carella C, Silvestris E, Cives M, Stucci SL, Tucci M, et al. SNPs in predicting clinical efficacy and toxicity of chemotherapy: walking through the quicksand. Oncotarget. 2018;9:25355–82.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wakasa K, Kawabata R, Nakao S, Hattori H, Taguchi K, Uchida J, et al. Dynamic modulation of thymidylate synthase gene expression and fluorouracil sensitivity in human colorectal cancer cells. PLoS ONE. 2015;10:e0123076.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Samsonoff WA, Reston J, McKee M, O’Connor B, Galivan J, Maley G, et al. Intracellular location of thymidylate synthase and its state of phosphorylation. J Biol Chem. 1997;272:13281–5.

    Article  CAS  PubMed  Google Scholar 

  6. Fraczyk T, Kubiński K, Masłyk M, Cieśla J, Hellman U, Shugar D, et al. Phosphorylation of thymidylate synthase from various sources by human protein kinase CK2 and its catalytic subunits. Bioorg Chem. 2010;38:124–31.

    Article  CAS  PubMed  Google Scholar 

  7. Anderson DD, Woeller CF, Stover PJ. Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase. Clin Chem Lab Med. 2007;45:1760–3.

    Article  CAS  PubMed  Google Scholar 

  8. Peña MMO, Melo SP, **ng Y-Y, White K, Barbour KW, Berger FG. The intrinsically disordered N-terminal domain of thymidylate synthase targets the enzyme to the ubiquitin-independent proteasomal degradation pathway. J Biol Chem. 2009;284:31597–607.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hahne H, Sobotzki N, Nyberg T, Helm D, Borodkin VS, van Aalten DM, et al. Proteome wide purification and identification of O-GlcNAc modified proteins using Click chemistry and mass spectrometry. J Proteome Res. 2013;12:927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sprung R, Nandi A, Chen Y, Kim SC, Barma D, Falck JR, et al. Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res. 2005;4:950–7.

    Article  CAS  PubMed  Google Scholar 

  11. Yang X, Qian K. Protein O -GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. 2017;18:452–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanover JA, Chen W, Bond MR. O-GlcNAc in cancer: an oncometabolism-fueled vicious cycle. J Bioenerg Biomembr. 2018;50:155–73.

    Article  CAS  PubMed  Google Scholar 

  13. Kanwal S, Fardini Y, Pagesy P, N’tumba-Byn T, Pierre-Eugène C, Masson E, et al. O-GlcNAcylation-inducing treatments inhibit estrogen receptor α expression and confer resistance to 4-OH-tamoxifen in human breast cancer-derived MCF-7 cells. PLoS ONE. 2013;8:e69150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee H, Oh Y, Jeon Y-J, Lee S-Y, Kim H, Lee H-J, et al. DR4-Ser424 O-GlcNAcylation promotes sensitization of TRAIL-tolerant persisters and TRAIL-resistant cancer cells to death. Cancer Res. 2019;79:2839–52.

    Article  CAS  PubMed  Google Scholar 

  15. Yang S-Z, Xu F, Yuan K, Sun Y, Zhou T, Zhao X, et al. Regulation of pancreatic cancer TRAIL resistance by protein O-GlcNAcylation. Lab Investig. 2020;100:777–785.

  16. Zhou F, Yang X, Zhao H, Liu Y, Feng Y, An R, et al. Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer. Theranostics 2018;8:5200–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. de Queiroz RM, Madan R, Chien J, Dias WB, Slawson C. Changes in O-linked N-acetylglucosamine (O-GlcNAc) homeostasis activate the p53 pathway in ovarian cancer cells. J Biol Chem. 2016;291:18897–914.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Luanpitpong S, Angsutararux P, Samart P, Chanthra N, Chanvorachote P, Issaragrisil S. Hyper- O -GlcNAcylation induces cisplatin resistance via regulation of p53 and c-Myc in human lung carcinoma. Sci Rep. 2017;7:10607.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Luanpitpong S, Chanthra N, Janan M, Poohadsuan J, Samart P, U-Pratya Y, et al. Inhibition of O-GlcNAcase sensitizes apoptosis and reverses bortezomib resistance in mantle cell lymphoma through modification of truncated Bid. Mol Cancer Ther. 2018;17:484–96.

    Article  CAS  PubMed  Google Scholar 

  20. Sekine H, Okazaki K, Kato K, Alam MM, Shima H, Katsuoka F, et al. O-Glcnacylation signal mediates proteasome inhibitor resistance in cancer cells by stabilizing NRF1. Mol Cell Biol. 2018;01:38.

    Google Scholar 

  21. **e X, Wu Q, Zhang K, Liu Y, Zhang N, Chen Q, et al. O-GlcNAc regulates MTA1 transcriptional activity during breast cancer cells genotoxic adaptation. bioRxiv. 2021. https://doi.org/10.1101/2021.02.08.430201.

  22. Kang KA, Piao MJ, Ryu YS, Kang HK, Chang WY, Keum YS, et al. Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells. Oncotarget. 2016;7:40594–620.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stastna M, Janeckova L, Hrckulak D, Kriz V, Korinek V. Human colorectal cancer from the perspective of mouse models. Genes. 2020;10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826908/.

  24. Decourcelle A, Loison I, Baldini S, Leprince D, Dehennaut V. Evidence of a compensatory regulation of colonic O-GlcNAc transferase and O-GlcNAcase expression in response to disruption of O-GlcNAc homeostasis. Biochem Biophys Res Commun. 2020;521:125–30.

    Article  CAS  PubMed  Google Scholar 

  25. Peters GJ, van der Wilt CL, van Triest B, Codacci-Pisanelli G, Johnston PG, van Groeningen CJ, et al. Thymidylate synthase and drug resistance. Eur J Cancer . 1995;31A:1299–305.

    Article  CAS  PubMed  Google Scholar 

  26. Lesuffleur T, Kornowski A, Luccioni C, Muleris M, Barbat A, Beaumatin J, et al. Adaptation to 5-fluorouracil of the heterogeneous human colon tumor cell line HT-29 results in the selection of cells committed to differentiation. Int J Cancer. 1991;49:721–30.

    Article  CAS  PubMed  Google Scholar 

  27. Frączyk T, Ruman T, Wilk P, Palmowski P, Rogowska-Wrzesinska A, Cieśla J, et al. Properties of phosphorylated thymidylate synthase. Biochim Biophys Acta. 2015;1854:1922–34.

    Article  PubMed  Google Scholar 

  28. Ruan H-B, Nie Y, Yang X. Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol Cell Proteom. 2013;12:3489–97.

    Article  CAS  Google Scholar 

  29. Forsthoefel AM, Peña MMO, **ng YY, Rafique Z, Berger FG. Structural determinants for the intracellular degradation of human thymidylate synthase. Biochemistry. 2004;43:1972–9.

    Article  CAS  PubMed  Google Scholar 

  30. Peña MMO, **ng YY, Koli S, Berger FG. Role of N-terminal residues in the ubiquitin-independent degradation of human thymidylate synthase. Biochem J. 2006;394:355–63.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Very N, Lefebvre T, El Yazidi-Belkoura I. Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 2017;9:1380–402.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mi W, Gu Y, Han C, Liu H, Fan Q, Zhang X, et al. O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim Biophys Acta. 2011;1812:514–9.

    Article  CAS  PubMed  Google Scholar 

  33. Olivier-Van Stichelen S, Dehennaut V, Buzy A, Zachayus J-L, Guinez C, Mir A-M, et al. O-GlcNAcylation stabilizes β-catenin through direct competition with phosphorylation at threonine 41. FASEB J. 2014;28:3325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu M, Chu S, Fei B, Fang X, Liu Z. O-GlcNAcylation of ITGA5 facilitates the occurrence and development of colorectal cancer. Exp Cell Res. 2019;382:111464.

    Article  CAS  PubMed  Google Scholar 

  35. Singh JP, Qian K, Lee J-S, Zhou J, Han X, Zhang B, et al. O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene. 2020;39:560–73.

    Article  CAS  PubMed  Google Scholar 

  36. Raab S, Gadault A, Very N, Decourcelle A, Baldini S, Schulz C, et al. Dual regulation of fatty acid synthase (FASN) expression by O-GlcNAc transferase (OGT) and mTOR pathway in proliferating liver cancer cells. Cell Mol Life Sci. 2021;78:5397–413.

    Article  CAS  PubMed  Google Scholar 

  37. Rahman L, Voeller D, Rhaman M, Lipkowitz S, Allegra C, Barrett J, et al. Thymidylate synthase as an oncogene: a novel role for an essential DNA synthesis enzyme. Cancer Cell. 2004;5:341–51.

    Article  CAS  PubMed  Google Scholar 

  38. Yang YR, Jang H-J, Yoon S, Lee YH, Nam D, Kim IS, et al. OGA heterozygosity suppresses intestinal tumorigenesis in Apcmin/+ mice. Oncogenesis. 2014;3:e109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steenackers A, Olivier-Van Stichelen S, Baldini SF, Dehennaut V, Toillon R-A, Le Bourhis X, et al. Silencing the Nucleocytoplasmic O-GlcNAc Transferase reduces proliferation, adhesion, and migration of cancer and fetal human colon cell lines. Front Endocrinol. 2020;7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879930/.

  40. Yang YR, Song M, Lee H, Jeon Y, Choi E-J, Jang H-J, et al. O-GlcNAcase is essential for embryonic development and maintenance of genomic stability. Aging Cell. 2012;11:439–48.

    Article  CAS  PubMed  Google Scholar 

  41. ** Y, Nakajima G, Schmitz JC, Chu E, Ju J. Multi-level gene expression profiles affected by thymidylate synthase and 5-fluorouracil in colon cancer. BMC Genom. 2006;7:68.

    Article  Google Scholar 

  42. Peters GJ, Backus HHJ, Freemantle S, van Triest B, Codacci-Pisanelli G, van der Wilt CL, et al. Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochim Biophys Acta. 2002;1587:194–205.

    Article  CAS  PubMed  Google Scholar 

  43. Nishiyama M, Yamamoto W, Park JS, Okamoto R, Hanaoka H, Takano H, et al. Low-dose cisplatin and 5-fluorouracil in combination can repress increased gene expression of cellular resistance determinants to themselves. Clin Cancer Res. 1999;5:2620–8.

    CAS  PubMed  Google Scholar 

  44. Swain SM, Lippman ME, Egan EF, Drake JC, Steinberg SM, Allegra CJ. Fluorouracil and high-dose leucovorin in previously treated patients with metastatic breast cancer. JCO. 1989;7:890–9.

    Article  CAS  Google Scholar 

  45. Gajjar. Influence of thymidylate synthase expression on survival in patients with colorectal cancer. 2021. https://www.ijamhrjournal.org/article.asp?issn=2349-4220;year=2017;volume=4;issue=2;spage=61;epage=68;aulast=Gajjar.

  46. Bai W, Wu Y, Zhang P, ** Y. Correlations between expression levels of thymidylate synthase, thymidine phosphorylase and dihydropyrimidine dehydrogenase, and efficacy of 5-fluorouracil-based chemotherapy for advanced colorectal cancer. Int J Clin Exp Pathol. 2015;8:12333–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Haltiwanger RS, Blomberg MA, Hart GW. Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase. J Biol Chem. 1992;267:9005–13.

    Article  CAS  PubMed  Google Scholar 

  48. Pederson NV, Zanghi JA, Miller WM, Knop RH. Discrimination of fluorinated uridine metabolites in N-417 small cell lung cancer cell extracts via 19F- and 31P-NMR. Magn Reson Med. 1994;31:224–8.

    Article  CAS  PubMed  Google Scholar 

  49. Barbour KW, **ng Y-Y, Peña EA, Berger FG. Characterization of the bipartite degron that regulates ubiquitin-independent degradation of thymidylate synthase. Biosci Rep. 2013;33. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549573/.

  50. Chanama S, Chitnumsub P, Leartsakulpanich U, Chanama M. Distinct dimer interface of Plasmodium falciparum thymidylate synthase: Implication for species-specific antimalarial drug design. Southeast Asian J Ttropical Med Public Health. 2017;48:722–36.

    Google Scholar 

  51. Pozzi C, Lopresti L, Santucci M, Costi MP, Mangani S. Evidence of destabilization of the human thymidylate synthase (hTS) dimeric structure induced by the interface mutation Q62R. Biomolecules. 2019;9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523895/.

  52. Ferrara P, Andermarcher E, Bossis G, Acquaviva C, Brockly F, Jariel-Encontre I, et al. The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of expression. Oncogene. 2003;22:1461–74.

    Article  CAS  PubMed  Google Scholar 

  53. Yuzwa SA, Macauley MS, Heinonen JE, Shan X, Dennis RJ, He Y, et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat Chem Biol. 2008;4:483–90.

    Article  CAS  PubMed  Google Scholar 

  54. Lam C, Low J-Y, Tran PT, Wang H. The hexosamine biosynthetic pathway and cancer: Current knowledge and future therapeutic strategies. Cancer Lett. 2021;503:11–8.

    Article  CAS  PubMed  Google Scholar 

  55. Becker C, Fantini MC, Wirtz S, Nikolaev A, Kiesslich R, Lehr HA, et al. In vivo imaging of colitis and colon cancer development in mice using high resolution chromoendoscopy. Gut. 2005;54:950–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hardivillé S, Banerjee PS, Selen Alpergin ES, Smith DM, Han G, Ma J, et al. TATA-box binding protein O-GlcNAcylation at T114 regulates formation of the B-TFIID complex and is critical for metabolic gene regulation. Mol Cell. 2020;77:1143–e7.

    Article  PubMed  Google Scholar 

  57. Etienne M-C, Ilc K, Formento J-L, Laurent-Puig P, Formento P, Cheradame S, et al. Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms: relationships with 5-fluorouracil sensitivity. Br J Cancer. 2004;90:526–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Decourcelle A, Very N, Djouina M, Loison I, Thévenet J, Body-Malapel M, et al. O-GlcNAcylation links nutrition to the epigenetic downregulation of UNC5A during colon carcinogenesis. Cancers. 2020;12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693889/.

  59. Almog R, Waddling CA, Maley F, Maley GF, Van Roey P. Crystal structure of a deletion mutant of human thymidylate synthase Δ (7–29) and its ternary complex with Tomudex and dUMP. Protein Sci. 2001;10:988–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jorgensen WL, Tirado-Rives J. Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J Comput Chem. 2005;26:1689–700.

    Article  CAS  PubMed  Google Scholar 

  61. Vergoten G, Mazur I, Lagant P, Michalski JC, Zanetta JP. The SPASIBA force field as an essential tool for studying the structure and dynamics of saccharides. Biochimie. 2003;85:65–73.

    Article  CAS  PubMed  Google Scholar 

  62. Lagant P, Nolde D, Stote R, Vergoten G, Karplus M. Increasing normal modes analysis accuracy: the SPASIBA spectroscopic force field introduced into the CHARMM program. J Phys Chem A. 2004;108:4019–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Ligue Contre le Cancer/Comité du Nord/Comité de la Somme”, the “Région Hauts-de-France” (Cancer Regional Program), the University of Lille and the “Center National de la Recherche Scientifique”. NV is the recipient of a fellowship from the “Ministère de l’Enseignement Supérieur et de la Recherche”. The authors acknowledge the financial support from ITMO Cancer AVIESAN (Alliance Nationale pour les Sciences de la Vie et de la Santé, National Alliance for Life Sciences and Health) within the framework of the cancer plan for Orbitrap mass spectrometer funding. We thank Dr. Guillemette Huet (CANTHER UMR9020 UMR1277, Lille, France) for HT-29 5F31 cell line [26], Dr. Matthew G. Alteen (Department of Chemistry, Simon Fraser University, Canada) for Thiamet-G and Dr. Cyril Couturier (UMR8090 IBL, Lille, France) for pcDNA3.1-Ub-HA plasmid gifts.

Author information

Authors and Affiliations

Authors

Contributions

NV designed, performed, and analyzed in vitro and in vivo experiment data and co-wrote the paper. SH performed plasmid constructions and PEG synthesis and co-wrote the paper. AD contributed to the in vivo experiments. JKC contributed to the in vivo experiment design and the reviewing of the paper. JT contributed to the in vivo experiments. MD performed mice colonoscopy and contributed to the IHC experiments. AP performed mass spectrometry analyzes. GV performed TS structure modeling in silico analysis. CS performed microscopy acquisition of fluorescence images of immunocytochemistry experiments. TL contributed to discussions and reviewed the paper. VD contributed to the work design, the experiments, the data analysis and the reviewing of the paper. IEB supervised and conceptualized the research, contributed to the experiments and data analyzes, and co-wrote the paper. All authors read and approved the paper.

Corresponding author

Correspondence to Ikram El Yazidi-Belkoura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Very, N., Hardivillé, S., Decourcelle, A. et al. Thymidylate synthase O-GlcNAcylation: a molecular mechanism of 5-FU sensitization in colorectal cancer. Oncogene 41, 745–756 (2022). https://doi.org/10.1038/s41388-021-02121-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02121-9

  • Springer Nature Limited

Navigation