Log in

Using NMR in Structural Studies of Aluminum Hydroxide Intercalation Compounds with Lithium Salts

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The effect of the anion charge on the structure of [LiAl2(OH)6]nX (X = Cl-, Br-, I-, SO4 2-, C6H8O4 2-) intercalation compounds and the water effect on the structure of [LiAl2(OH)6]Cl·nH2O have been studied using 1H, 7Li, and 27Al NMR. A change in the charge on the anion leads to significant changes in the asymmetry parameter for the lithium and aluminum nuclei with relatively small changes in the quadrupolar coupling constant and the broadening factor. The structure of the intermediate [LiAl2(OH)6]Cl·0.5H2O hydrate can be represented as a derivative of the structure of the anhydrous [LiAl2(OH)6]Cl intercalate with a slightly increased layer thickness and a minor orthorhombic distortion of the hexagonal cell; the water molecules partially fill the interlayer voids and participate in the diffusion process. Further hydration of the intercalate (x ≥ 1) leads to a minor (0.2Å) increase in the layer thickness and is accompanied by disordering of chloride ions and water molecules in the interlayer space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. P. Isupov, N. P. Kotsupalo, A. P. Nemudry, and L. T. Menzeres, “Aluminum hydroxide as selective sorbent of lithium salts from brines and technical solutions,” in: A. Dabrowski (ed.), Adsorption and Its Applications in Industry and Environmental Protection. Studies in Surface and Catalysis 120, Elsevier, Amsterdam (1999), pp. 621-652.

    Google Scholar 

  2. V. P. Isupov, “Intercalation compounds of aluminum hydroxide,” Doctoral Dissertation in Chem. Sci., Novosibirsk, Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences (1998).

    Google Scholar 

  3. N. P. Kotsupalo, “Physicochemical principles underlying the production of selective sorbents and the process of lithium extraction from brines with utilization of the latter,” Doctoral Dissertation in Chem. Sci., Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk (2000).

    Google Scholar 

  4. H. Saalfeld and M. Wedde, Z. Kristallogr., 139, 129-135 (1974).

    Google Scholar 

  5. F. Zigan, W. Joswig, and N. Burger, Z. Kristallogr., 148, 255-273 (1978).

    Google Scholar 

  6. H. J. Bosmans, Acta Crystallogr., B26, No.7, 649-652 (1970).

    Google Scholar 

  7. G. R. Clark, K. A. Rogers, and G. S. Henderson, Z. Kristallogr., 213, 96-100 (1998).

    Google Scholar 

  8. V. P. Isupov, A. P. Nemudry, N. P. Kotsupalo, and T. I. Samsonova, in: Chemistry and Technology of Rare and Nonferrous Metals and Their Salts, Abstracts of Papers, Frunze (1982), p. 336.

  9. J. L. Burba, “Crystalline lithium aluminates,” U.S. Patent No. 4348295 (1983).

  10. A. P. Nemudry, V. P. Isupov, N. P. Kotsupalo, and V. V. Boldyrev, React. Solids, 1, 221-226 (1986).

    Google Scholar 

  11. K. R. Poeppelmeier and S. J. Hwu, Inorg. Chem., 26, 3297-3302 (1987).

    Google Scholar 

  12. A. V. Besserguenev, A. M. Fogg, R. J. Francis, et al., Chem. Mater., No. 9, 241-247 (1997).

    Google Scholar 

  13. V. P. Isupov, S. P. Gabuda, S. G. Kozlova, and L. É. Chupakhina, Zh. Strukt. Khim., 39, No.3, 448-452 (1998).

    Google Scholar 

  14. A. M. Fogg, A. L. Rohl, G. M. Parkinson, and D. O'Hare, Chem. Mater., No. 11, 1194-1200 (1999).

    Google Scholar 

  15. S. G. Kozlova, S. P. Gabuda, V. P. Isupov, and L. É. Chupakhina, Zh. Strukt. Khim., 42, No.2, 231-235 (2001).

    Google Scholar 

  16. X. Hou and R. J. Kirkpatrick, Inorg. Chem., 40, No.25, 6397-6404 (2001).

    Google Scholar 

  17. A. P. Nemudry, V. P. Isupov, N. P. Kotsupalo, and V. V. Boldyrev, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, No. 11, 28-32 (1984).

    Google Scholar 

  18. V. P. Isupov and L. É. Chupakhina, Zh. Neorg. Khim., 43, No.1, 58-64 (1998).

    Google Scholar 

  19. S. E. Ashbrook, J. McManus, K. J. D. MacKenzie, and S. Wimperis, J. Phys. Chem. B, 104, 6408-6416 (2000).

    Google Scholar 

  20. V. P. Isupov, S. G. Kozlova, S. P. Gabuda, and L. É. Chupakhina, Dokl. Ross. Akad. Nauk, 355, No.6, 774-776 (1997).

    Google Scholar 

  21. A. Abragam, The Principles of Nuclear Magnetism, Oxford (1961).

  22. S. P. Gabuda and A. F. Rzhavin, Nuclear Magnetic Resonance in Crystalline Hydrates and Hydrated Proteins [in Russian], Nauka, Novosibirsk (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlova, S.G., Gabuda, S.P., Isupov, V.P. et al. Using NMR in Structural Studies of Aluminum Hydroxide Intercalation Compounds with Lithium Salts. Journal of Structural Chemistry 44, 198–205 (2003). https://doi.org/10.1023/A:1025586321484

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025586321484

Navigation