Log in

Lithium ion conductivity and mobility in the Li0.12Na0.88Ta0.4Nb0.6O3 solid solution

  • Published:
Inorganic Materials Aims and scope

Abstract

Lithium ion mobility and the superionic phase transition in the Li0.12Na0.88Ta0.4Nb0.6O3 solid solution have been studied using temperature-dependent ionic conductivity measurements and Raman spectroscopy. From the temperature dependences of the conductivity and the width of a Raman line corresponding to Li+ and Na+ vibrations in the AO x (A = Na+, Li+) polyhedra, the average lifetime of the Li+ ion in its equilibrium position and the height of the barrier to hop** have been estimated at ≃3.9 × 10−13 s and ≃16 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palatnikov, M.N., Sidorov, N.V., and Kalinnikov, V.T., Segnetoelektricheskie tverdye rastvory na osnove oksidnykh soedinenii niobiya i tantala: sintez, issledovanie strukturnogo uporyadocheniya i fizicheskikh kharakteristik (Ferroelectric Solid Solutions Based on Niobium and Tantalum Oxide Compounds: Synthesis, Structural Ordering, and Physical Properties), St. Petersburg: Nauka, 2001.

    Google Scholar 

  2. Palatnikov, M.N., Electronic materials based on ferroelectric single crystals and ceramic solid solutions between alkali metal niobates and tantalates with micro- and nanostructures, Doctoral (Eng.) Dissertation, Apatity, 2010.

    Google Scholar 

  3. Sidorov, N.V., Palatnikov, M.N., Teplyakova, N.A., et al., Ionic conductivity of LixNa1 − x TayNb1−y O3 solid solutions, Inorg. Mater., 2013, vol. 49, no. 6, pp. 595–601.

    Article  CAS  Google Scholar 

  4. Teplyakova, N.A., Structural phase transitions of Li0.12Na0.88TayNb1 − y O3 ferroelectric solid solutions and their Raman signatures, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Petrozavodsk, 2012.

    Google Scholar 

  5. Zhizhin, G.N, Krasyukov, Yu.N., Mukhtarov, E.I., and Rogovoi, V.N., Rotational reorientation anisotropy in cyclohexane near its phase transition, Pis’ma Zh. Eksp. Teor. Fiz., 1978, vol. 28, no. 7, pp. 466–468.

    Google Scholar 

  6. Ivanov-Shitz, A.K. and Murin, I.V., Ionika tverdogo tela (Solid-State Ionics), St. Petersburg: S.-Peterburg. Univ., 2000, vol. 1.

    Google Scholar 

  7. Inaguma, Y., Chen, L., Itoh, M., and Nakamura, T., Candidate compounds with perovskite structure for high lithium ionic conductivity, Solid State Ionics, 1994, vols. 70–71, pp. 196–202.

    Article  Google Scholar 

  8. Shaikhlislamova, A.R., Goryainov, A.Yu., and Yaroslavtsev, A.B., Ionic conductivity of A3 − 2x NbxAl2 − x (PO4)3 (A = Li, Na) NASICON-type phosphates, Inorg. Mater., 2010, vol. 46, no. 8, pp. 896–899.

    Article  CAS  Google Scholar 

  9. Sidorov, N.V., Palatnikov, M.N., and Kalinnikov, V.T., Phase transitions in Li0.12Na0.88TayNb1−y O3 solid solutions, Inorg. Mater., 1999, vol. 35, no. 2, pp. 158–165.

    CAS  Google Scholar 

  10. Bokov, V.A., Ferroelectric and magnetic phase transitions of ordered and disordered crystals, Doctoral (Phys.-Math.) Dissertation, Leningrad, 1982 p. 431.

    Google Scholar 

  11. Gorelik, V.S., Vdovin, A.V., and Moiseenko, V.N., Raman and hyper-Rayleigh scattering in lithium tetraborate crystals, Preprint of Lebedev Institute of Physics, Russian Academy of Sciences, Moscow, 2003, no. 14, p. 99.

    Google Scholar 

  12. Zhizhin, G.N., Mavrin, B.N., and Shabanov, V.F., Opticheskie kolebatel’nye spektry kristallov (Optical Vibrational Spectra of Crystals), Moscow: Nauka, 1984, p. 232.

    Google Scholar 

  13. Frenkel, J., Sobranie izbrannykh trudov (Selected Works), vol. 3: Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Moscow: Akad. Nauk SSSR, 1959, p. 459.

    Google Scholar 

  14. Rakov, A.V., Brownian rotational motion of molecules in condensed matter studied by Raman and infrared absorption spectroscopies, Tr. Fiz. Inst. Akad. Nauk im. P. N. Lebedeva, 1964, vol. 27, pp. 111–149.

    CAS  Google Scholar 

  15. Yuzyuk, Yu.I., Simon, P., Gagarina, E., et al., Modulated phases in NaNbO3: Raman scattering, synchrotron X-ray diffraction and dielectric investigations, J. Phys.: Condens. Matter, 2005, vol. 17, no. 33, pp. 4977–4990.

    Article  CAS  Google Scholar 

  16. Bloembergen, N., Purcell, E.M., and Pound, R.V., Relaxation effects in nuclear magnetic resonance absorption, Phys. Rev., 1948, vol. 73, no. 7, pp. 679–687.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sidorov.

Additional information

Original Russian Text © N.V. Sidorov, M.N. Palatnikov, N.A. Teplyakova, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 10, pp. 1149–1153.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, N.V., Palatnikov, M.N. & Teplyakova, N.A. Lithium ion conductivity and mobility in the Li0.12Na0.88Ta0.4Nb0.6O3 solid solution. Inorg Mater 50, 1063–1067 (2014). https://doi.org/10.1134/S0020168514090131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514090131

Keywords

Navigation