Log in

Physical and mechanical properties evaluation of Acropora palmata coralline species for bone substitution applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The search for ideal materials for bone substitution has been a challenge for many decades. Numerous natural and synthetic materials have been studied. For this application, exoskeletons of coral have been considered a good alternative given its tendency to resorption, biocompatibility and similarity to the mineral bone phase. Very few studies of these materials consider a detailed analysis of the structure–property relationship. The purpose of this work was to carry out the microstructural characterization of a coralline species named Acropora palmata and the determination of the mechanical and physico-chemical properties. Measurements of hardness, compressive strength, bulk density and apparent porosity were performed. From these results it was determined that this marine coral species could be an alternative xenograft due to its mechanical properties and osteoconductive nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Martz, V. Goel, M. Pope and J. Park, J. Biomed. Mater. Res. (Appl. Biomater.) 38 (1927) 267.

    Google Scholar 

  2. P. K. Bajpai, in “Biomaterials in Reconstructive Surgery”, (L. R. Rubin, M. O. St Louis: Mosby, C. V., 1983) p. 312.

  3. G. Guillemin, A. Meunier, P. Dallant and P. Christel, J. Biomed. Mater. Res. 23 (1989) 765.

    Google Scholar 

  4. G. Guillemin, J. FourniÉ, J.-L. Patat and M. ChÉtail, C.R. Acad. Sci. Paris 293 (1981) 371.

    Google Scholar 

  5. G. Guillemin, J.-L. Patat, J. FourniÉ, M. ChÉtail, J. Biomed. Mater. Res. 21 (1987) 557.

    Google Scholar 

  6. S. K. Papacharalambous and K. I. Anastasoff, Int. J. Oral Maxillofac. Surg. 22 (1993) 260.

    Google Scholar 

  7. F. X. Roux, D. Brasnu, B. Loty, B. George and G. Guillermin, J. Neurosurg. 69 (1988) 510.

    Google Scholar 

  8. J. C. Quintana, Acta Odontol. Venezol. 36 (1998) 25.

    Google Scholar 

  9. H. Escobar and H. Freites, L. Ruiz, M. Dr. Thesis, Hospital Dr. Domingo Luciani, Caracas, Venezuela, 1998.

  10. ASTM C373-77 (Standard Test Method for water absorption bulk density, apparent porosity and apparent specific gravity of fired whiteware products, 1997) p. 311.

  11. ASTM C135-76 (Standard Test Method for true specific gravity of refractory materials by water immersion, 1976) p. 78.

  12. ASTM C830-88 (Standard Test Method for apparent porosity, liquid absorption, apparent specific gravity and bulk density of refractory shapes by vacuum pressure, 1988) p. 251.

  13. J. T. Jones and M. F. Berard, in “Ceramics Industrial Processing and Testing” (The Iowa State University Press, Ames, Iowa, 1972) p. 93.

    Google Scholar 

  14. C. Collins, in “Flow of fluids through porous materials” (Reinhold Chemical Engineering Series, New York, 1961) p. 13.

    Google Scholar 

  15. ASTM C773-79 (Standard Test Method for compressive strength of fired whiteware materials, 1979) p. 818.

  16. T. P. Hughes, Mar. Ecol. Prog. Ser. 35 (1987) 259.

    Google Scholar 

  17. M. Farag, in “Selection of Materials and Manufacturing Process for Engineering Design” (Prentice Hall, New York, 1989) p. 486.

    Google Scholar 

  18. J. A. Buckwalter, M. J. Glimcher, R. R. Cooper and R. Recker, J. Bone Joint Surg. 77A(8) (1995) 1256.

    Google Scholar 

  19. M. J. Grimm and J. L. Williams, J. Biomech. 7 (1997) 743.

    Google Scholar 

  20. P. Frayssinet and N. Rouquet, in “11th Conference of the ESB”, Tolouse, France, July 8–11, 1998.

  21. J. F. Piecuch, J. Dent. Res. 61(12) (1982) 1458.

    Google Scholar 

  22. J. J. Klawitter, Doctoral Thesis, Clemson University, Clemson, 1970.

  23. R. T. Chiroff, E. W. White, J. N. Weber and D. M. Roy, J. Biomed. Mater. Res. 6 (1975) 29.

    Google Scholar 

  24. J. Y. Rho, T. Y. Tsui and G. M. Pharr, Biomaterials 18(20) (1997) 1325.

    Google Scholar 

  25. J. A. Chamberlain, Paleobiology 4 (1978) 419.

    Google Scholar 

  26. L. Rohl, E. Larsen, F. Linde, A. Odgaard and J. Jorgensen, J. Biomech. 24(12) (1991) 1143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, K., Camero, S., Alarcón, M.E. et al. Physical and mechanical properties evaluation of Acropora palmata coralline species for bone substitution applications. Journal of Materials Science: Materials in Medicine 13, 509–515 (2002). https://doi.org/10.1023/A:1014787209506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014787209506

Keywords

Navigation