Log in

The Influence of Bi2O3 and Sb2O3 on the Electrical Properties of ZnO-Based Varistors

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

This work presents a study of the influence of both Bi content and Sb/Bi ratio on the electrical characteristics of a commercial-type ZnO varistor. In contrast to previous studies two nonlinear coefficients, the breakdown fields and energy absorption abilities were measured after sintering at 970°C or 930°C. The Bi-content was varied from 0.9 to 1.8 at% while the Sb/Bi ratio was varied from 0.8 to 1.5, leading to values of up to 104 for the nonlinear coefficient α1, 1100 V mm−1 for the breakdown field and 1137 J cm−3 for the energy absorption ability. The highest α value was measured for the highest Bi-content and the lowest Sb/Bi ratio and vice versa. The breakdown field E V increased with lower sintering temperature, increased Sb/Bi ratio (at a given Bi-content) and increased Bi-content (at a given Sb/Bi ratio). The energy absorption coefficient increased at the higher sinter temperature and with lower Sb and Bi concentrations.

The observed effects were related to the amount of spinel phase (Zn7Sb2O12) formed during the sintering process and the amount of liquid phase present during early stages of the sintering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Matsuoka, Jpn. J. Appl. Phys., 10, 736 (1971).

    Google Scholar 

  2. M. Bartkowiak, M.G. Comber, and G.D. Mahan, J. Appl. Phys., 79, 8629 (1996).

    Google Scholar 

  3. S. Ezhilvalavan and T.R.N. Kutty, J. Mater. Sci., 7, 137 (1996).

    Google Scholar 

  4. J. Fan and F.R. Sale, in Electroceramics: Production, Properties and Microstructures, edited by W.E. Lee and A. Bell (Ashgate Publishing Company, London, 1994), p. 151.

    Google Scholar 

  5. J. Fan and R. Freer, J. Mater. Sci., 32, 415 (1997).

    Google Scholar 

  6. T.K. Gupta, J. Mater. Res., 7, 3280 (1992).

    Google Scholar 

  7. M.C.S. Nobrega and W.A. Mannheimer, J. Am. Ceram. Soc., 79, 1504 (1996).

    Google Scholar 

  8. G.M. Safronov, V.N. Batog, T.V. Stepanyuk, and P. Fedorov, Russ. J. Inorg. Chem., 16, 460 (1971).

    Google Scholar 

  9. E. Olsson and G.L. Dunlop, J. Appl. Phys., 66, 3666 (1989).

    Google Scholar 

  10. E. Olsson, L.K. Falk, and G.L. Dunlop, J. Mater. Sci., 20, 4091 (1985).

    Google Scholar 

  11. H. Wang and Y.-M. Chiang, J. Am. Ceram. Soc., 81, 89 (1998).

    Google Scholar 

  12. E. Olsson, G. Dunlop, and R. Österlund, J. Am. Ceram. Soc., 76, 65 (1993).

    Google Scholar 

  13. D. Dey and R.C. Bradt, J. Am. Ceram. Soc., 75, 2529 (1992).

    Google Scholar 

  14. J. Kim, T. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc., 72, 1541 (1989).

    Google Scholar 

  15. T. Asokan, G.N.K. Iyengar, and G.R. Nagabhushana, J. Mater. Sci., 22, 2229 (1987).

    Google Scholar 

  16. M. Inada and M. Matsuoka, Jpn. J. Appl. Phys., 19, 409 (1980).

    Google Scholar 

  17. J.L. Huang and K.B. Li, J. Mater. Res., 9, 1526 (1994).

    Google Scholar 

  18. O. Alvarez-Fregoso, Rev. Mex. Fisica, 40, 771 (1994).

    Google Scholar 

  19. M. Ito, M. Tanahashi, M. Uehara, and A. Iga, Jpn. J. Appl. Phys., 36, 1460 (1997).

    Google Scholar 

  20. A. Mergen and W.E. Lee, J. Europ. Ceram. Soc., 17, 1049 (1997).

    Google Scholar 

  21. A. Lorenz, J. Ott, M. Harrer, E.A. Preissner, A.H. Whitehead, and M. Schreiber, J. Electroceram. Soc., 6, 43 (2001).

    Google Scholar 

  22. T.K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990).

    Google Scholar 

  23. L.M. Levinson and H.R. Philipp, Ceram. Bull., 65, 639 (1986).

    Google Scholar 

  24. W.G. Morris, J. Vac. Sci. Technol., 13, 926 (1976).

    Google Scholar 

  25. R. Einzinger, Appl. Surf. Sci., 1, 329 (1978).

    Google Scholar 

  26. E.R. Leite, M.A.L. Nobre, E. Longo, and J.A. Varela, J. Mater. Sci., 31, 5391 (1996).

    Google Scholar 

  27. V. Kraševec, M. Trontelj, and L. Golič, J. Am. Ceram. Soc., 74, 760 (1991).

    Google Scholar 

  28. M. Inada, Jap. J. Appl. Phys., 17, 1 (1978).

    Google Scholar 

  29. H. Honning and E.J. Kohlmeyer, Erzbergerbau Metallüettenw., 10, 12 (1957).

    Google Scholar 

  30. Y.S. Lee and T.Y. Tseng, J. Mater. Sci.: Materials in Electronics, 8, 115 (1997).

    Google Scholar 

  31. F. Greuter, T. Christen, and J. Glatz-Reichenbach, Mat. Res. Soc. Symp. Proc., 500, 235 (1998).

    Google Scholar 

  32. A. Vojta and D.R. Clarke, J. Appl. Phys., 81, 985 (1997).

    Google Scholar 

  33. M. Bartkowiak and G.D. Mahan, Phys. Rev. B, 51, 10825 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ott, J., Lorenz, A., Harrer, M. et al. The Influence of Bi2O3 and Sb2O3 on the Electrical Properties of ZnO-Based Varistors. Journal of Electroceramics 6, 135–146 (2001). https://doi.org/10.1023/A:1011408818555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011408818555

Navigation