Log in

Aptamer-functionalized polydiacetylene biosensor for the detection of three foodborne pathogens

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Rapid, simple and sensitive screening of foodborne pathogens is of great significance to ensure food safety. In this study, an aptamer-functionalized polydiacetylene (Apta-PDA) biosensor was developed for the detection of E. coli O157:H7, S. typhimurium or V. parahaemolyticus. First, aptamers responding to the target bacteria were modified on the surface of magnetic beads by covalent binding to form MBs-oligonucleotide conjugates for bacterial enrichment. Then, an Apta-PDA biosensor was obtained by connecting the aptamers to the PDA nanovesicles using the carbodiimide method. Molecular recognition occurred in the presence of the target bacteria, whereby the aptamer folded into a sequence‐defined unique structure, resulting in an MBs-Apta/bacteria/Apta-PDA sandwich structure. Due to the optical properties of PDA, the blue-red transition of the detection system could be observed by the naked eye and quantified by the colorimetric response percentage (CR%). Under optimized conditions, the detection limits of E. coli O157:H7, S. typhimurium and V. parahaemolyticus were 39, 60 and 60 CFU/ml, respectively, with a selectivity of 100% and a reaction time of 30 min. Compared with the gold standard method, the accuracy of the three target bacteria detection reached 98%, 97.5% and 97%, respectively, and the sensitivity and specificity were both greater than 90%. The entire detection process was rapid and easy to execute without any special equipment, making this technology particularly suitable for resource-poor laboratories or regions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that all the experimental data are available.

References

  1. S. Pires, B. Desta, L. Mughini-Gras, B. Mmbaga, O. Fayemi, E. Salvador, T. Gobena, S. Majowicz, T. Hald, P. Hoejskov, Y. Minato, B. Devleesschauwer, Burden of foodborne diseases: think global, act local. Curr. Opin. Food Sci. 39, 152–159 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  2. E. Lim, J. Kim, W. Sul, J. Kim, B. Kim, H. Kim, O.K. Koo, Metagenomic analysis of microbial composition revealed cross-contamination pathway of bacteria at a foodservice facility. Front. Microbiol. 12, 636329 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  3. M. Kirk, S. Pires, R. Black, M. Caipo, J. Crump, B. Devleesschauwer, D. Dopfer, A. Fazil, C. Fischer-Walker, T. Hald, A. Hall, K. Keddy, R. Lake, C. Lanata, P. Torgerson, A. Havelaar, F. Angulo, World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med. 12, e1001921 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  4. S. Yoo, S. Lee, Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 34, 7–25 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. D. Vanegas, C. Gomes, N. Cavallaro, D. Giraldo-Escobar, E. McLamore, Emerging biorecognition and transduction schemes for rapid detection of pathogenic bacteria in food. Compr. Rev. Food Sci. Food Saf. 16, 1188–1205 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. Q. He, S. Guo, Z. Qian, X. Chen, Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem. Soc. Rev. 44, 6258–6286 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. Kim, S. Lee, D. Jung, K. Jeong, Photochemical isomerization and topochemical polymerization of the programmed asymmetric amphiphiles. Sci. Rep. 6, 28659 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. Yapor, A. Alharby, C. Gentry-Weeks, M. Reynolds, A.K.M.M. Alam, Y. Li, Polydiacetylene nanofiber composites as a colorimetric sensor responding to Escherichia coli and pH. ACS Omega 2, 7334–7342 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y. Ishijima, M. Okaniwa, Y. Oaki, H. Imai, Two exfoliation approaches for organic layered compounds: hydrophilic and hydrophobic polydiacetylene nanosheets. Chem. Sci. 8, 647–653 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. Y. Kim, S. Jung, H. Ryu, Y. Yoo, S. Kim, T. Jeon, Synthetic biomimetic membranes and their sensor applications. Sensors (Basel) 12, 9530–9550 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. A. Saenjaiban, T. Singtisan, P. Suppakul, K. Jantanasakulwong, W. Punyodom, P. Rachtanapun, novel color change film as a time-temperature indicator using polydiacetylene/silver nanoparticles embedded in carboxymethyl cellulose. Polymers (Basel) 12(2020), 2306 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Wang, H. Pei, Y. Jia, J. Liu, Z. Li, K. Ai, Z. Lu, L. Lu, Synergistic tailoring of electrostatic and hydrophobic interactions for rapid and specific recognition of lysophosphatidic acid, an early-stage ovarian cancer biomarker. J. Am. Chem. Soc. 139, 11616–11621 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. C. Zhou, T. You, H. Jang, H. Ryu, E. Lee, M. Oh, Y. Huh, S. Kim, T. Jeon, Aptamer-conjugated polydiacetylene colorimetric paper chip for the detection of Bacillus thuringiensis spores. Sensors (Basel) 20, 3124 (2020)

    Article  CAS  PubMed  Google Scholar 

  14. A. Ellington, J. Szostak, In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990)

    Article  CAS  PubMed  Google Scholar 

  15. E. Torres-Chavolla, E. Alocilja, Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 24, 3175–3182 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. S. Sharma, M. Zajac, Y. Krishnan, A DNA aptamer for cyclic adenosine monophosphate that shows adaptive recognition. ChemBioChem 21, 157–162 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. C. Lawrence, A. Vallée-Bélisle, S. Pfeil, D. de Mornay, E. Lipman, K. Plaxco, A comparison of the folding kinetics of a small, artificially selected DNA aptamer with those of equivalently simple naturally occurring proteins. Protein Sci. 23, 56–66 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. W. Wu, J. Zhang, M. Zheng, Y. Zhong, J. Yang, Y. Zhao, W. Wu, W. Ye, J. Wen, Q. Wang, J. Lu, An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7. PLoS ONE 7, e48999 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. W. Wu, M. Li, Y. Wang, H. Ouyang, L. Wang, C. Li, Y. Cao, Q. Meng, J. Lu, Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium. Nanoscale Res. Lett. 7, 658 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  20. S. Song, X. Wang, K. Xu, Q. Li, L. Ning, X. Yang, Selection of highly specific aptamers to Vibrio parahaemolyticus using cell-SELEX powered by functionalized graphene oxide and rolling circle amplification. Anal. Chim. Acta 1052, 153–162 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. W. Yi, X. Liu, Y. Li, J. Li, C. **a, G. Zhou, W. Zhang, W. Zhao, X. Chen, P. Wang, Remodeling bacterial polysaccharides by metabolic pathway engineering. Proc. Natl. Acad. Sci. U. S. A. 106, 4207–4212 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. P. Li, S. Lu, T. Shan, Y. Mou, Y. Li, W. Sun, L. Zhou, Extraction optimization of water-extracted mycelial polysaccharide from endophytic fungus Fusarium oxysporum Dzf17 by response surface methodology. Int. J. Mol. Sci. 13, 5441–5453 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Sun, M. Guan, C. Guo, L. Ma, H. Zhou, X. Wang, F. Mi, J. Li, A novel surface-enhanced Raman scattering method for simultaneous detection of ketamine and amphetamine. RSC Adv. 10, 36609–36616 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M. Witt, J. Walter, F. Stahl, Aptamer microarrays-current status and future prospects. Microarrays (Basel) 4, 115–132 (2015)

    Article  CAS  PubMed  Google Scholar 

  25. V. Naresh, N. Lee, A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors (Basel) 21, 1109 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. P. Gao, L. Wang, Y. He, Y. Wang, X. Yang, S. Fu, X. Qin, Q. Chen, C. Man, Y. Jiang, An enhanced lateral flow assay based on aptamer-magnetic separation and multifold AuNPs for ultrasensitive detection of Salmonella typhimurium in milk. Foods 10, 1605 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. W. Hsu, Y. Shih, M. Lee, H. Huang, W. Wu, Bead number effect in a magnetic-beads-based digital microfluidic immunoassay. Biosensors (Basel) 12, 340 (2022)

    Article  CAS  PubMed  Google Scholar 

  28. N. de-los-Santos-Álvarez, M. Lobo-Castañón, A. Miranda-Ordieres, P. Tuñón-Blanco, Aptamers as recognition elements for label-free analytical devices. Trends Analyt Chem. 27, 437–446 (2008)

    Article  Google Scholar 

  29. C. Pagba, S. Lane, S. Wachsmann-Hogiu, Conformational changes in quadruplex oligonucleotide structures probed by Raman spectroscopy. Biomed. Opt. Express 2, 207–217 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  30. J. Gao, N. Liu, X. Zhang, E. Yang, Y. Song, J. Zhang, Q. Han, Utilizing the DNA aptamer to determine lethal α-amanitin in mushroom samples and urine by magnetic bead-ELISA (MELISA). Molecules 27, 538 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. N. Aliakbarinodehi, P. Jolly, N. Bhalla, A. Miodek, G. De Micheli, P. Estrela, S. Carrara, Aptamer-based field-effect biosensor for tenofovir detection. Sci. Rep. 7, 44409 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Lönne, S. Bolten, A. Lavrentieva, F. Stahl, T. Scheper, J. Walter, Development of an aptamer-based affinity purification method for vascular endothelial growth factor. Biotechnol. Rep. (Amst.) 8, 16–23 (2015)

    Article  PubMed  Google Scholar 

  33. R. Jelinek, M. Ritenberg, Polydiacetylenes-recent molecular advances and applications. RSC Adv. 3, 21192–21201 (2013)

    Article  CAS  Google Scholar 

  34. S. Papaorn, K. Yong-Hoog, O. Tanakorn, Z. Zhigang, Quantitative colorimetric detection of dissolved ammonia using polydiacetylene sensors enabled by machine learning classifiers. ACS Omega 7, 18714–18721 (2022)

    Article  Google Scholar 

  35. T. Pan, X. Shan, D. Jiang, L. Qi, W. Wang, Z. Chen, Fluorometric aptasensor for determination of Escherichia coli O157:H7 by FRET effect between aminated carbon quantum dots and graphene oxide. Anal. Sci. 37, 833–838 (2021)

    Article  CAS  PubMed  Google Scholar 

  36. L. Ye, G. Zhao, W. Dou, An electrochemical immunoassay for Escherichia coli O157:H7 using double functionalized Au@Pt/SiO2 nanocomposites and immune magnetic nanoparticles. Talanta 182, 354–362 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. D. Sun, T. Fan, F. Liu, F. Wang, D. Gao, J. Lin, A microfluidic chemiluminescence biosensor based on multiple signal amplification for rapid and sensitive detection of E. coli O157:H7. Biosens. Bioelectron. 212, 114390 (2022)

    Article  CAS  PubMed  Google Scholar 

  38. D. Zhao, Y. Liu, Z. Pei, Q. Zhang, Y. Zhang, W. Zhang, S. Sang, Surface stress-induced membrane biosensor based on double-layer stable gold nanostructures for detection. IET Nanobiotechnol. 13, 905–910 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Y. Suo, W. Yin, Q. Zhu, W. Wu, W. Cao, Y. Mu, A specific and sensitive aptamer-based digital PCR chip for Salmonella typhimurium detection. Biosensors (Basel) 12, 458 (2022)

    Article  CAS  PubMed  Google Scholar 

  40. M. Chen, L. Pan, K. Tu, A fluorescence biosensor for Salmonella typhimurium detection in food based on the nano-self-assembly of alendronic acid modified upconversion and gold nanoparticles. Anal. Methods 13, 2415–2423 (2021)

    Article  CAS  PubMed  Google Scholar 

  41. S. Sannigrahi, S. Arumugasamy, J. Mathiyarasu, Magnetosome-anti-Salmonella antibody complex based biosensor for the detection of Salmonella typhimurium. Mater Sci Eng C Mater Biol Appl. 114, 111071 (2020)

    Article  CAS  PubMed  Google Scholar 

  42. S. Wei, X. Wang, F. Wang, X. Hao, H. Li, Z. Su, Y. Guo, X. Shi, X. Liu, J. Li, C. Zhao, Colorimetric detection of Salmonella typhimurium based on hexadecyl trimethyl ammonium bromide-induced supramolecular assembly of β-cyclodextrin-capped gold nanoparticles. Anal. Bioanal. Chem. 414, 6069–6076 (2022)

    Article  CAS  PubMed  Google Scholar 

  43. N. Ying, Y. Wang, X. Song, L. Yang, B. Qin, Y. Wu, W. Fang, Lateral flow colorimetric biosensor for detection of Vibrio parahaemolyticus based on hybridization chain reaction and aptamer. Mikrochim. Acta 188, 381 (2021)

    Article  CAS  PubMed  Google Scholar 

  44. M. Wang, J. Zeng, J. Wang, X. Wang, Y. Wang, N. Gan, Dual-mode aptasensor for simultaneous detection of multiple food-borne pathogenic bacteria based on colorimetry and microfluidic chip using stir bar sorptive extraction. Mikrochim. Acta 188, 244 (2021)

    Article  CAS  PubMed  Google Scholar 

  45. N. Duan, S. Wu, X. Ma, Y. **a, Z. Wang, A universal fluorescent aptasensor based on AccuBlue dye for the detection of pathogenic bacteria. Anal. Biochem. 454, 1–6 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. J. Kwun, S. Yun, L. Park, J. Lee, Development of 1,1’-oxalyldiimidazole chemiluminescent biosensor using the combination of graphene oxide and hairpin aptamer and its application. Talanta 119, 262–267 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Basic Public Welfare Research Program (LGC20C010001), Zhejiang Medical and Health Science and Technology Plan Project (2019KY397), and Zhejiang Provincial Education Department Fund (Y201838965).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Wu, J., Pan, X. et al. Aptamer-functionalized polydiacetylene biosensor for the detection of three foodborne pathogens. ANAL. SCI. 40, 199–211 (2024). https://doi.org/10.1007/s44211-023-00445-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00445-y

Keywords

Navigation