Log in

J-aggregation of 5, 10, 15, 20-tetraphenyl-21H, 23H-porphinetetrasulfonic acid in a molecular crowding environment simulated using dextran

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In a molecular crowding environment, different thermodynamics is often observed in a dilute solution. One such example is the promotion of the formation of amyloids, which are causal agents of Alzheimer’s disease. Although a considerable number of molecular crowding studies have been reported, its effect remains unclear. In this study, we investigated a J-aggregation of a porphyrin derivative, 5, 10, 15, 20-tetraphenyl-21H,23H-porphinetetrasulfonic acid (TPPS), in a molecular crowding environment simulated by dextran (Dex) in HClO4, HCl, and NaCl solutions. The changes in the number of monomers in the J-aggregate (n) with the concentration of Dex (CDex) depended on the type of solution. No change in n was observed in the NaCl solution, which indicated that the Dex solution did not affect the J-aggregation because of the ionic strength effect. In the HCl solution, the aggregation behavior changed with the pH. Further, at a low pH, the electrostatic interactions promoted J-aggregation by the volume exclusion of Dex, while the aggregation was suppressed at a high pH owing to steric hindrance. A different aggregation mechanism, involving the hydrogen bonding between NH in the center of the TPPS macrocyclic frame and the SO3H and ClO4 functional groups, was responsible for the J-aggregation in the HClO4 solution. Moreover, the n value increased owing to the volume exclusion effect. We expect that this study will be useful for further elucidation of the molecular crowding effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.A. Dix, A.S. Verkman, Annu. Rev. Biophys. 37, 247–263 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. N.A. Chebotareva, B.I. Kurganov, N.B. Livanova, Biochemistry 69, 1239–1251 (2004)

    CAS  PubMed  Google Scholar 

  3. D.A. White, A.K. Buell, T.P.J. Knowles, M.E. Welland, C.M. Dobson, J. Am. Chem. Soc. 132, 5170–5175 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. N. Ostrowska, M. Feig, J. Trylska, Front Mol. Biosci. 6, 86 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. Gomez, S. Klumpp, Front. Phys. 3, 45 (2015)

    Article  Google Scholar 

  6. S. Nakano, D. Miyoshi, N. Sugimoto, Chem. Rev. 114, 2733–2758 (2014)

    Article  CAS  PubMed  Google Scholar 

  7. S. Klumpp, W. Bode, P. Puri, Eur. Phys. J. Special Topics 227, 2315–2328 (2019)

    Article  Google Scholar 

  8. R.J. Ellis, Trends Biochem. Sci. 26, 597–604 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. B.-R. Zhou, Z. Zhou, Q.-L. Hu, J. Chen, Y. Liang, Biochim. Biophys. Acta 1784, 472–480 (2008)

    Article  CAS  PubMed  Google Scholar 

  10. A. Zinchenko, Q. Chen, N.V. Berezhnoy, S. Wang, L. Nordenskiold, Soft Matter 16, 4366–4372 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. D. Hall, A.P. Minton, Biochim. Biophys. Acta 1649, 127–139 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. M.J. Morelli, R.J. Allen, P.R. Wolde, Biophys. J. 101, 2882–2891 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. G. Rivas, F. Ferrone, J. Herzfeld, EMBO Rep. 5, 23–27 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. D. Kilburn, J.H. Roh, L. Guo, R.M. Briber, S.A. Woodson, J. Am. Chem. Soc. 132, 8690–8696 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J.A. Parsegian, R.P. Rand, D.C. Rau, Methods Enzymol. 259, 43–94 (1995)

    Article  CAS  PubMed  Google Scholar 

  16. F. Despa, D.P. Orgill, R.C. Lee, Ann. N. Y. Acad. Sci. 1066, 54–66 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. D. Miyoshi, N. Sugimoto, Biochimie 90, 1040–1051 (2008)

    Article  CAS  PubMed  Google Scholar 

  18. A.P. Minton, Mol. Cellular Biochem. 55, 119–140 (1983)

    Article  CAS  Google Scholar 

  19. A.P. Minton, Methods Enzymol. 295, 127–149 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. A. Dhar, A. Samiotakis, S. Ebbinghaus, L. Nienhaus, D. Homouz, M. Gruebele, M.S. Cheung, Proc. Natl. Acad. Sci. U.S.A. 107, 17586–17591 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Li, Z. Liu, J. Ren, X. Qu, Chem. Sci. 11, 7479–7486 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Miyagawa, H. Komatsu, S. Nagatomo, K. Nakatani, J. Phys. Chem. B 125, 9853–9859 (2021)

    Article  CAS  PubMed  Google Scholar 

  23. A. Miyagawa, H. Komatsu, S. Nagatomo, K. Nakatani, J. Mol. Liq. 360, 119526 (2022)

    Article  CAS  Google Scholar 

  24. M. Verma, A. Vats, V. Taneja, Ann. Indian. Acad. Neurol. 18, 138–145 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  25. J. Adamcik, R. Mezzenga, Curr. Opin. Colloid Interface Sci. 17, 369–376 (2012)

    Article  CAS  Google Scholar 

  26. R. Tycko, Protein Sci. 23, 1528–1539 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S.-Y. Ow, D.E. Dunstan, Protein Sci. 23, 1315–1331 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. K. Tsemekhman, L. Goldschmidt, D. Eisenberg, D. Baker, Protein Sci. 16, 761–764 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. L. Breydo, K.D. Reddy, A. Piai, I.C. Felli, R. Pierattelli, V.N. Uversky, Biochim. Biophys. Acta 1844, 346–357 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. J. Liu, F.C. Dehle, Y. Liu, E. Bahraminejad, H. Ecroyd, D.C. Thorn, J.A. Carver, J. Agric. Food Chem. 64, 1335–1343 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. A. Ghahghaei, A. Divsalar, N. Faridi, Protein J. 29, 257–264 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. C.C. Chau, S.E. Radford, E.W. Hewitt, P. Actis, Nano Lett. 20, 5553–5561 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. N. Sasaki, C. Kase, K. Sato, Anal. Sci. 37, 727–732 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. E.B. Fleischer, J.M. Palmer, T.S. Srivastava, A. Chatterjee, J. Am. Chem. Soc. 93, 3162–3167 (1971)

    Article  CAS  PubMed  Google Scholar 

  35. R.F. Pasternack, P.R. Huber, B.G. Engasser, L. Francesconi, E. Gibbs, P. Fasella, G.C. Venturo, L.D.C. Hinds, J. Am. Chem. Soc. 94, 4511–4517 (1972)

    Article  CAS  PubMed  Google Scholar 

  36. J.M. Ribo, J. Crusats, J.A. Farrera, M.L. Valero, J. Chem. Soc., Chem. Commun. 6, 681–682 (1994)

    Article  Google Scholar 

  37. S. Jiang, L. Zhang, M. Liu, Chem. Commun. 41, 6252–6254 (2009)

    Article  Google Scholar 

  38. N.C. Maiti, M. Ravikanth, S. Mazumdar, N. Periasamy, J. Phys. Chem. 99, 17192–17197 (1995)

    Article  CAS  Google Scholar 

  39. N.C. Maiti, S. Mazumdar, N. Periasamy, J. Phys. Chem. B 102, 1528–1538 (1998)

    Article  CAS  Google Scholar 

  40. J. Valanciunaite, V. Poderys, S. Bagdonas, R. Rotomskis, A. Selskis, J. Phys.: Conf. Ser. 61, 1207–1211 (2007)

    CAS  Google Scholar 

  41. N. Mataga, N. Bull, Chem. Soc. Jpn. 30, 375–379 (1957)

    Article  CAS  Google Scholar 

  42. O. Ohno, Y. Kaizu, H. Kobayashi, J. Chem. Phys. 99, 4128–4139 (1993)

    Article  CAS  Google Scholar 

  43. S.L. Perry, Y. Li, D. Priftis, L. Leon, M. Tirrell, Polymers 6, 1756–1772 (2014)

    Article  Google Scholar 

  44. S. Tabandeh, C.E. Lemus, L. Leon, Polymers 13, 2074 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. J.C. Heaton, J.J. Russell, T. Underwood, R. Boughtflower, D.V. McCalley, J. Chromatogr. A 1347, 39–48 (2014)

    Article  CAS  PubMed  Google Scholar 

  46. A. Maciejewski, M. Szymanski, R.P. Steer, Can. J. Chem. 71, 1548–1555 (1993)

    Article  CAS  Google Scholar 

  47. A. Belay, Inter. J. Biophys. 2, 12–17 (2012)

    Article  Google Scholar 

  48. J.L. Bricks, Y.L. Slominskii, I.D. Panas, A.P. Demchenko, Methods Appl. Fluoresc. 6, 012001 (2017)

    Article  PubMed  Google Scholar 

  49. A. Miyagawa, H. Yoneda, H. Mizuno, M. Numata, T. Okada, G. Fukuhara, ChemPhotoChem 5, 118–122 (2020)

    Article  Google Scholar 

  50. G.D. Luca, A. Romeo, L.M. Scolaro, J. Phys. Chem. B 110, 7309–7315 (2006)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Early-Career Scientists (No. 21K14650) from the Japan Society for the Promotion of Science and an Incentive Research Grant from the Yazaki Memorial Foundation for Science and Technology. (A.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihisa Miyagawa.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1250 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyagawa, A., Nakatani, K. J-aggregation of 5, 10, 15, 20-tetraphenyl-21H, 23H-porphinetetrasulfonic acid in a molecular crowding environment simulated using dextran. ANAL. SCI. 38, 1505–1512 (2022). https://doi.org/10.1007/s44211-022-00185-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00185-5

Keywords

Navigation