Log in

Beurling quotient subspaces for covariant representations of product systems

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

Let \((\sigma , V^{(1)}, \dots , V^{(k)})\) be a pure doubly commuting isometric representation of the product system \({\mathbb {E}}\) on a Hilbert space \({\mathcal {H}}_{V}.\) A \(\sigma \)-invariant subspace \({\mathcal {K}}\) is said to be Beurling quotient subspace of \({\mathcal {H}}_{V}\) if there exist a Hilbert space \({\mathcal {H}}_W,\) a pure doubly commuting isometric representation \((\pi , W^{(1)}, \dots , W^{(k)})\) of \({\mathbb {E}}\) on \({\mathcal {H}}_W\) and an isometric multi-analytic operator \(M_\Theta :{{\mathcal {H}}_W} \rightarrow {\mathcal {H}}_{V}\), such that

$$\begin{aligned} {\mathcal {K}}={\mathcal {H}}_{V}\ominus M_{\Theta }{\mathcal {H}}_W, \end{aligned}$$

where \(\Theta : {\mathcal {W}}_{{\mathcal {H}}_W} \rightarrow {\mathcal {H}}_{V} \) is an inner operator and \({\mathcal {W}}_{{\mathcal {H}}_W}\) is the generating wandering subspace for \((\pi , W^{(1)}, \dots , W^{(k)}).\) In this article, we prove the following characterization of the Beurling quotient subspaces: A subspace \({\mathcal {K}}\) of \({\mathcal {H}}_{V}\) is a Beurling quotient subspace if and only if

$$\begin{aligned}&(I_{E_{j}}\otimes ( (I_{E_{i}}\otimes P_{{\mathcal {K}}}) - \widetilde{T}^{(i) *}\widetilde{T}^{(i)}))(t_{i,j} \otimes I_{{\mathcal {H}}_{V}})\\&(I_{E_{i}}\otimes ( (I_{E_{j}}\otimes P_{{\mathcal {K}}})- \widetilde{T}^{(j) *}\widetilde{T}^{(j)}))=0, \end{aligned}$$

where \(\widetilde{T}^{(i)}:=P_{{\mathcal {K}}}\widetilde{V}^{(i)} (I_{E_{i}} \otimes P_{{\mathcal {K}}})\) and \( 1 \le i,j\le k.\) As a consequence, we derive a concrete regular dilation theorem for a pure, completely contractive covariant representation \((\sigma , V^{(1)}, \dots , V^{(k)})\) of \({\mathbb {E}}\) on a Hilbert space \({\mathcal {H}}_{V}\) which satisfies Brehmer–Solel condition and using it and the above characterization, we provide a necessary and sufficient condition that when a completely contractive covariant representation is unitarily equivalent to the compression of the induced representation on the Beurling quotient subspace. Further, we study the relation between Sz. Nagy–Foias-type factorization of isometric multi-analytic operators and joint invariant subspaces of the compression of the induced representation on the Beurling quotient subspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ambrozie, C., Müller, V.: Commutative dilation theory. In: Alpay, D. (ed.) Operator Theory. Springer, Berlin (2014)

    MATH  Google Scholar 

  2. Arveson, W.: Continuous analogues of Fock space. Mem. Am. Math. Soc. 80(409), iv+66 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Bercovici, H.: Operator theory and arithmetic in \({\cal{H}}^{\infty }\). In: Mathematical Surveys and Monographs, vol. 26, p. xii+275. American Mathematical Society, Providence (1988). (ISBN: 0-8218-1528-8)

  4. Beurling, A.: On two problems concerning linear transformations in Hilbert space. Acta Math. 81, 239–255 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhat, B., Rajarama, V., Tirthankar, B.: A model theory for q-commuting contractive tuples. J. Oper. Theory 47, 97–116 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Bhattacharjee, M., Das, B.K., Debnath, R., Sarkar, J.: Beurling quotient modules on the polydisc. J. Funct. Anal. 282(1), 109258 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bickel, K., Liaw, C.: Properties of Beurling-type submodules via Agler decompositions. J. Funct. Anal. 272(1), 83–111 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brehmer, S.: Über vetauschbare Kontraktionen des Hilbertschen Raumes. (German) Acta Sci. Math. (Szeged) 22, 106–111 (1961)

    MathSciNet  MATH  Google Scholar 

  9. Chen, X., Guo, K.: Analytic Hilbert modules. In: Chapman & Hall/CRC Research Notes in Mathematics, vol. 433, p. viii+201. Chapman & Hall/CRC, Boca Raton (2003). (ISBN: 1-58488-399-5)

  10. Curto, R.E., Vasilescu, F.-H.: Standard operator models in the polydisc. Indiana Univ. Math. J. 42(3), 791–810 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Curto, R.E., Vasilescu, F.H.: Standard operator models in the polydisc. II. Indiana Univ. Math. J. 44(3), 727–746 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Douglas, R.G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17, 413–415 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Douglas, R.G., Paulsen, V.I.: Hilbert modules over function algebras. In: Pitman Research Notes in Mathematics Series, vol. 217, p. vi+130. Longman Scientific & Technical, Harlow; copublished in the United States with Wiley, New York (1989). (ISBN: 0-582-04796-X)

  14. Fowler, N.J.: Discrete product systems of Hilbert bimodules. Pac. J. Math. 204(2), 335–375 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, K., Wang, K.: Beurling type quotient modules over the bidisk and boundary representations. J. Funct. Anal. 257(10), 3218–3238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jørgensen Palle, E.T., Proskurin, D.P., Samoĭlenko, Y.S.: On \(C^*\)-algebras generated by pairs of \(q\)-commuting isometries. J. Phys. A 38(12), 2669–2680 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Jeu, M., Pinto, P.R.: The structure of non-commuting isometries. Adv. Math. 368, 107–149 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Mandrekar, V.: The validity of Beurling theorems in polydiscs. Proc. Am. Math. Soc. 103(1), 145–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Muhly, P.S., Solel, B.: Tensor algebras over \(C^{*}\)-correspondences: representations, dilations, and \(C^{*}\)-envelopes. J. Funct. Anal. 158(2), 389–457 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Muhly, P.S., Solel, B.: Tensor algebras, induced representations, and the Wold decomposition. Can. J. Math. 51(4), 850–880 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Muhly, P.S., Solel, B.: The Poisson kernel for Hardy algebras. Complex Anal. Oper. Theory 3(1), 221–242 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nagy Sz., B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space. Second Edition. Revised and Enlarged Edition. Universitext, p. xiv+474. Springer, New York (2010). (ISBN: 978-1-4419-6093-1)

  23. Pimsner, M.V.: A Class of \(C^*\)-Algebras Generalizing Both Cuntz–Krieger Algebras and Crossed Products by \({\bf Z}\), Free Probability Theory (Waterloo, ON, 1995), Fields Inst. Commun., vol. 12, pp. 189–212. Amer. Math. Soc., Providence (1997)

  24. Popescu, G.: Isometric dilations for infinite sequences of noncommuting operators. Trans. Am. Math. Soc. 316(2), 523–536 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Popescu, G.: Characteristic functions for infinite sequences of noncommuting operators. J. Oper. Theory 22(1), 51–71 (1989)

    MathSciNet  MATH  Google Scholar 

  26. Popescu, G.: Doubly \(\Lambda \)-commuting row isometries, universal models, and classification. J. Funct. Anal. 279(12), 108798 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rieffel, M.A.: Induced representations of \(C^* \)-algebras. Adv. Math. 13, 176–257 (1974)

    Article  MATH  Google Scholar 

  28. Rudin, W.: Function Theory in Polydiscs, p. vii+188. W. A. Benjamin Inc., New York–Amsterdam (1969)

    MATH  Google Scholar 

  29. Sarkar, J., Sasane, A., Wick, B.D.: Doubly commuting submodules of the Hardy module over polydiscs. Stud. Math. 217(2), 179–192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Skalski, A.: On isometric dilations of product systems of \(C^{*}\)-correspondences and applications to families of contractions associated to higher-rank graphs. Indiana Univ. Math. J. 58(5), 2227–2252 (2009)

  31. Skalski, A., Zacharias, J.: Wold decomposition for representations of product systems of \(C^*\)-correspondences. Int. J. Math. 19(4), 455–479 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Solel, B.: Regular dilations of representations of product systems. Math. Proc. R. Ir. Acad. 108(1), 89–110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Słociński, M.: On the Wold-type decomposition of a pair of commuting isometries. Ann. Polon. Math. 37, 255–262 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Trivedi, H., Veerabathiran, S.: Doubly commuting invariant subspaces for representations of product systems of \(C^{*}\)-correspondences. Ann. Funct. Anal. 12(3), 47 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Weber, M.: On \(C^*\)-algebras generated by isometries with twisted commutation relations. J. Funct. Anal. 264(8), 1975–2004 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wold, H.: A Study in the Analysis of Stationary Time Series. Almquist and Wiksell, Uppsala (1938)

    MATH  Google Scholar 

  37. Yang, R.: A brief survey of operator theory in \({\cal{H} }^{2}{({\mathbb{D} }^{2})}\). In: Handbook of Analytic Operator Theory, CRC Press/Chapman Hall Handb. Math. Ser., pp. 223–258. CRC Press, Boca Raton (2019)

    Chapter  Google Scholar 

  38. Yang, Y., Zhu, S., Lu, Y.: The reducibility of compressed shifts on a class of quotient modules over the bidisk. Ann. Funct. Anal. 10(4), 447–459 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are thankful to the referee for a careful reading of the paper and for useful suggestions. We also thank Prof. Jaydeb Sarkar for making us aware of the reference [1]. Azad Rohilla is supported by a UGC fellowship (File No: 16-6(DEC.2017) /2018(NET/CSIR)). Shankar Veerabathiran thanks ISI Bangalore for the visiting scientist position. Harsh Trivedi is supported by MATRICS-SERB Research Grant, File No: MTR/2021/000286, by the Science and Engineering Research Board (SERB), Department of Science & Technology (DST), Government of India. We acknowledge the Centre for Mathematical & Financial Computing and the DST-FIST Grant for the financial support for the computing lab facility under the scheme FIST ( File No: SR/FST/MS-I/2018/24) at the LNMIIT, Jaipur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azad Rohilla.

Additional information

Communicated by Baruch Solel.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohilla, A., Trivedi, H. & Veerabathiran, S. Beurling quotient subspaces for covariant representations of product systems. Ann. Funct. Anal. 14, 79 (2023). https://doi.org/10.1007/s43034-023-00301-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-023-00301-0

Keywords

Mathematics Subject Classification

Navigation