Log in

Abstract

This paper is concerned with the reflected stochastic Burgers equation driven both by the Brownian motion and by the Poisson random measure. The existence and uniqueness of solutions are established. The penalization method plays an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There is no data used in this article.

References

  1. Albeverio, S., Wu, J.L., Zhang, T.S.: Parabolic SPDEs driven by Poisson white noise. Stoch. Process. Appl. 74, 21–36 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Assaad, O., Tudor, C.: Pathwise analysis and parameter estimation for the stochastic Burgers equation. Bulletin des Sciences Mathématiques 170, 102995 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertini, L., Cancrini, N., Jona-Lasinio, G.: The stochastic Burgers equation. Commun. Math. Phys. 165(2), 211–232 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burgers, J.: The Nonlinear Diffusion Equation. Springer, Dordrecht (1974)

    Book  MATH  Google Scholar 

  5. Da Prato, G., Debussche, A., Teman, R.: Stochastic Burgers equation. Nonlinear Differ. Equ. Appl. 1, 389–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dalang, R., Mueller, C., Zambotti, L.: Hitting properties of parabolic SPDE’s with reflection. Ann. Probab. 34(4), 1423–1450 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Debbi, L., Dozzi, M.: On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stoch. Process. Appl. 115, 1764–1781 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Donati-Martin, C., Pardoux, E.: White noise driven SPDEs with reflection. Probab. Theory Relat. Fields 95(1), 1–24 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, Z.: On the uniqueness of invariant measure of the Burgers equation driven by Lévy processes. J. Theoret. Probab. 21, 322–335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, Z., Xu, T.: One-dimensional stochastic Burgers equation driven by Lévy processes. J. Funct. Anal. 234, 631–678 (2007)

    Article  MATH  Google Scholar 

  11. Duan, J., Peng, J.: White noise driven SPDEs with oblique reflection: existence and uniqueness. J. Math. Anal. Appl. 480(1), 123356 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Essaky, E., Ouknine, Y.: Homogenization of multivalued partial differential equations via reflected backward stochastic differential equations. Stoch. Anal. Appl. 22(1), 307–336 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fournier, N.: Malliavin calculus for parabolic SPDEs with jumps. Stoch. Process. Appl. 87(1), 115–147 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu, G., Horst, U., Qiu, J.: Maximum principle for quasi-linear reflected backward SPDEs. J. Math. Anal. Appl. 456, 307–336 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gyöngy, I.: Existence and uniqueness results for similinear stochastic partial differential equations. Stoch. Process. Appl. 73, 271–299 (1988)

    Article  MATH  Google Scholar 

  16. Gyöngy, I., Nualart, D.: On the stochastic Burgers equation in the real line. Ann. Probab. 27, 782–802 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hopf, E.: The partial differential equation \(u_t+uu_x=\mu u_{xx}\). Comm. Pure Appl. Math. 3, 201–230 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  18. Menaldi, J.: Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32(5), 733–744 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Menaldi, J., Robin, M.: Reflected diffusion processes with jumps. Ann. Probab. 13(2), 319–341 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mytnik, L.: Stochastic partial differential equations driven by stable noise. Probab. Theory Related Fields 123(2), 157–201 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nualart, D., Pardoux, E.: White noise driven quasilinear SPDEs with reflection. Probab. Theory Relat. Fields 93(1), 77–89 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Truman, A., Wu, J.: Stochastic Burgers equation with Lévy space-time white noise. In: Davies, I.M., Truman, A., Hassan, O., Morgan, K., Weatherill, N.P. (eds) Probabilistic Methods in Fluids, Proceedings of the Swansea 2002 Workshop, pp. 298-323. World Sci. Publishing, River Edge, NJ (2003)

  23. Wu, J., **e, B.: On a Burgers type nonlinear equation perturbed by a pure jump Lévy noise in \({\mathbb{R}}^d\). Bulletin des Sciences Mathématiques 136(5), 484–506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zambotti, L.: A reflected stochastic heat equation as symmetric dynamics with respect to the 3-d Bessel bridge. J. Funct. Anal. 180(1), 195–209 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, T.: Systems of stochastic partial differential equations with reflection: existence and uniqueness. Stoch. Process. Appl. 33(2), 137–151 (2010)

    Google Scholar 

  26. Zhang, T.: White noise driven SPDEs with reflection: strong Feller properties and Harnack inequalities. Potential Anal. 121(6), 1356–1372 (2011)

    Google Scholar 

  27. Zhang, T.: Stochastic Burgers type equations with reflection: existence, uniqueness. J. Diff. Equat. 267(8), 4537–4571 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Peng.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there are no conflicts of interests/competing interests.

Appendix A Stochastic Burgers Equation with Jumps

Appendix A Stochastic Burgers Equation with Jumps

Lemma A.1

Assume that \(g,\sigma\) and \(\gamma\) satisfy (H.2) and \(f{:}\mathbb{R}\rightarrow \mathbb{R}\) is a Lipschitz function. Then the following equation has a unique solution \(u\in S^2_{{\mathcal {F}}}([0,T];\,H)\cap L^2_{{\mathcal {F}}}([0,T];\,V){:}\)

$$\begin{aligned} \left\{ \begin{array}{l} \hbox{d}u(t,x)=\frac{\partial ^2 u(t,x)}{\partial x^2}\hbox{d}t+\frac{\partial g(u(t,x))}{\partial x}\hbox{d}t+f(u(t,x))\hbox{d}t\\ \qquad+\sum\limits^d_{k=1}\sigma _k(u(t,x))\hbox{d}B_k(t)+\int _{U}\gamma (u(t-,x),z){\tilde{N}}(\hbox{d}t,\hbox{d}z);\\ u(0,\cdot )=u_0(\cdot );\\ u(t,0)=u(t,1)=0,~ t\in \mathbb{R}_+. \end{array} \right. \end{aligned}$$
(A.1)

Proof

From Theorem 3.1 in [22], we know that (A.1) has a unique local solution u which satisfies \(E[u(t\wedge \tau _{\infty })|^2_H]<\infty ,\) where \(\tau _{\infty }=\sup _{k\geqslant 1}\tau _k\) with \(\tau _k=\inf \{t\geqslant 0{:}|u(t)|_H\geqslant k\}\wedge T\). Next, we will prove that u is the global solution. It suffices to show that \({\mathbb {P}}(\tau _{\infty }=T)=1\). To this end, we apply Itô’s formula to obtain

$$\begin{aligned}& | u(t) |^2_{H}+2\int ^t_0\Vert u(s)\Vert ^2\hbox{d}s\nonumber \\ =&| u(0) |^2_{H} +2\int ^t_0\int ^1_0 u(s,x) \frac{\partial g(u(s,x))}{\partial x}\hbox{d}x\hbox{d}s+2\sum ^d_{k=1}\int ^t_0\langle u(s),\sigma _k(u(s))\rangle _{H} \hbox{d}B_k(s)\nonumber \nonumber \\ &+2\int ^t_0\langle u(s),f(u(s))\rangle _{H} \hbox{d}s+\sum ^d_{k=1}\int ^t_0| \sigma _k(u(s)) |^2_{H} \hbox{d}s +\int ^t_0\int _{U} | \gamma (u(s-),z) |^2_{H}\nu (\hbox{d}z)\hbox{d}s\nonumber \\& +\int ^t_0\int _{U}( |u(s-)+ \gamma (u(s-),z)|^2_{H}-| u(s-)|^2_{H}){\tilde{N}}(\hbox{d}s,\hbox{d}z). \end{aligned}$$

From the arguments of Lemma 2, we can prove

$$\begin{aligned} E\left[\sup _{0\leqslant t\leqslant T}| u(t) |^2_{H}\right]+E\Big [\int ^{{T}}_0\Vert u^n(t)\Vert ^2 \hbox{d}t\Big ]<\infty . \end{aligned}$$

Note that

$${\mathbb{P}}(\tau _{k} \leqslant {\mkern 1mu} T) = {\mathbb{P}}(\left| {u(\tau _{k} )} \right|_{H} \geqslant k) \leqslant \frac{{E\left[ {\mathop {\sup }\limits_{{0 \leqslant {\kern 1pt} t \leqslant {\kern 1pt} T}} \left| {u(t)} \right|_{H}^{2} } \right]}}{{k^{2} }}.$$

Letting \(k\rightarrow \infty\), we have \({\mathbb {P}}(\tau _{\infty }=T)=1\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, H., Peng, J., Li, R. et al. Reflected Stochastic Burgers Equation with Jumps. Commun. Appl. Math. Comput. (2023). https://doi.org/10.1007/s42967-023-00305-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42967-023-00305-6

Keywords

Mathematics Subject Classification

Navigation