Log in

Superconvergence of Direct Discontinuous Galerkin Methods: Eigen-structure Analysis Based on Fourier Approach

  • Original Paper
  • Published:
Communications on Applied Mathematics and Computation Aims and scope Submit manuscript

Abstract

This paper investigates superconvergence properties of the direct discontinuous Galerkin (DDG) method with interface corrections and the symmetric DDG method for diffusion equations. We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes. Based on the eigen-structure analysis, we carry out error estimates of the DDG solutions, which can be decomposed into three parts: (i) dissipation errors of the physically relevant eigenvalue, which grow linearly with the time and are of order 2k for \(P^k\ (k=2,3)\) approximations; (ii) projection error from a special projection of the exact solution, which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue; (iii) dissipative errors of non-physically relevant eigenvalues, which decay exponentially with respect to the spatial mesh size \(\Delta {x}\). We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree \(P^2\) approximations, but are not for odd degree \(P^3\) approximations. Numerical experiments are provided to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adjerid, S., Devine, K., Flaherty, J., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191(11/12), 1097–1112 (2002)

    Article  MathSciNet  Google Scholar 

  2. Adjerid, S., Massey, T.: Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem. Comput. Methods Appl. Mech. Eng. 195(25/26/27/28), 3331–3346 (2006)

    Article  MathSciNet  Google Scholar 

  3. Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198(1), 106–130 (2004)

    Article  MathSciNet  Google Scholar 

  4. Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27(1), 5–40 (2006)

    Article  MathSciNet  Google Scholar 

  5. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  Google Scholar 

  6. Cao, W., Liu, H., Zhang, Z.: Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations. Numer. Methods Partial Differ. Equ. 33(1), 290–317 (2017)

    Article  MathSciNet  Google Scholar 

  7. Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin method for scalar nonlinear hyperbolic equations. SIAM J. Numer. Anal. 56(2), 732–765 (2018)

    Article  MathSciNet  Google Scholar 

  8. Cao, W., Zhang, Z.: Superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. Math. Comput. 85, 63–84 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chen, Z., Huang, H., Yan, J.: Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes. J. Comput. Phys. 308, 198–217 (2016)

    Article  MathSciNet  Google Scholar 

  10. Cheng, Y., Shu, C.-W.: Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227(22), 9612–9627 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cheng, Y., Shu, C.-W.: Superconvergence of local discontinuous Galerkin methods for one-dimensional convection-diffusion equations. Comput. Struct. 87(11/12), 630–641 (2009)

    Article  Google Scholar 

  12. Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47(6), 4044–4072 (2010)

    Article  MathSciNet  Google Scholar 

  13. Chuenjarern, N., Yang, Y.: Fourier analysis of local discontinuous Galerkin methods for linear parabolic equations on overlap** meshes. J. Sci. Comput. 81, 671–688 (2019)

    Article  MathSciNet  Google Scholar 

  14. Cockburn, B., Luskin, M., Shu, C.-W., Suli, E.: Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comput. 72(242), 577–606 (2003)

    Article  MathSciNet  Google Scholar 

  15. Guo, W., Zhong, X., Qiu, J.-M.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: eigen-structure analysis based on Fourier approach. J. Comput. Phys. 235, 458–485 (2013)

    Article  MathSciNet  Google Scholar 

  16. Hu, F., Hussaini, M., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151(2), 921–946 (1999)

    Article  Google Scholar 

  17. Ji, L., Xu, Y., Ryan, J.K.: Accuracy-enhancement of discontinuous Galerkin solutions for convection-diffusion equations in multiple-dimensions. Math. Comput. 81(280), 1929–1950 (2012)

    Article  MathSciNet  Google Scholar 

  18. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47(1), 475–698 (2009)

    Article  MathSciNet  Google Scholar 

  19. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)

    Article  MathSciNet  Google Scholar 

  20. Liu, X., Zhang, D., Meng, X., Wu, B.: Superconvergence of local discontinuous Galerkin methods with generalized alternating fluxes for 1D linear convection-diffusion equations. Sci. China Math. 64(6), 1305–1320 (2021)

    Article  MathSciNet  Google Scholar 

  21. Liu, X., Zhang, D., Meng, X., Wu, B.: Superconvergence of the local discontinuous Galerkin method for one dimensional nonlinear convection-diffusion equations. J. Sci. Comput. 87(1), 39 (2021)

    Article  MathSciNet  Google Scholar 

  22. Meng, X., Shu, C.-W., Zhang, Q., Wu, B.: Superconvergence of discontinuous Galerkin methods for scalar nonlinear conservation laws in one space dimension. SIAM J. Numer. Anal. 50(5), 2336–2356 (2012)

    Article  MathSciNet  Google Scholar 

  23. Miao, Y., Yan, J., Zhong, X.: Superconvergence study of the direct discontinuous Galerkin method and its variations for diffusion equations. Commun. Appl. Math. Comput. 4(1), 180–204 (2022)

    Article  MathSciNet  Google Scholar 

  24. Sármány, D., Botchev, M., van der Vegt, J.: Dispersion and dissipation error in high-order Runge-Kutta discontinuous Galerkin discretisations of the Maxwell equations. J. Sci. Comput. 33(1), 47–74 (2007)

    Article  MathSciNet  Google Scholar 

  25. Sherwin, S.: Dispersion analysis of the continuous and discontinuous Galerkin formulation. Lect. Notes Comput. Sci. Eng. 11, 425–432 (2000)

    Article  MathSciNet  Google Scholar 

  26. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  27. Steffen, M., Curtis, S., Kirby, R.M., Ryan, J.K.: Investigation of smoothness-increasing accuracy-conserving filters for improving streamline integration through discontinuous fields. IEEE Trans. Visual Comput. Graphics 14(3), 680–692 (2008)

    Article  Google Scholar 

  28. Vidden, C., Yan, J.: A new direct discontinuous Galerkin method with symmetric structure for nonlinear diffusion equations. J. Comput. Math. 31(6), 638–662 (2013)

    MathSciNet  Google Scholar 

  29. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MathSciNet  Google Scholar 

  30. Xu, Y., Meng, X., Shu, C.-W., Zhang, Q.: Superconvergence analysis of the Runge-Kutta discontinuous Galerkin methods for a linear hyperbolic equation. J. Sci. Comput. 84(1), 23 (2020)

    Article  MathSciNet  Google Scholar 

  31. Yang, H., Li, F., Qiu, J.: Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods. J. Sci. Comput. 55(3), 552–574 (2013)

    Article  MathSciNet  Google Scholar 

  32. Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50(6), 3110–3133 (2012)

    Article  MathSciNet  Google Scholar 

  33. Yang, Y., Shu, C.-W.: Analysis of sharp superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. J. Comput. Math. 33, 323–340 (2015)

    Article  MathSciNet  Google Scholar 

  34. Zhang, M., Shu, C.-W.: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13(3), 395–413 (2003)

    Article  MathSciNet  Google Scholar 

  35. Zhang, M., Shu, C.-W.: An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. Comput. Fluids 34(4), 581–592 (2005)

    Article  Google Scholar 

  36. Zhang, M., Shu, C.-W.: Fourier analysis for discontinuous Galerkin and related methods. Sci. Bull. 54(11), 1809–1816 (2009)

    Article  Google Scholar 

  37. Zhang, M., Yan, J.: Fourier type error analysis of the direct discontinuous Galerkin method and its variations for diffusion equations. J. Sci. Comput. 52(3), 638–655 (2012)

    Article  MathSciNet  Google Scholar 

  38. Zhang, M., Yan, J.: Fourier type super convergence study on DDGIC and symmetric DDG methods. J. Sci. Comput. 73, 1276–1289 (2017)

    Article  MathSciNet  Google Scholar 

  39. Zhong, X., Shu, C.-W.: Numerical resolution of discontinuous Galerkin methods for time dependent wave equations. Comput. Methods Appl. Mech. Eng. 200(41/42/43/44), 2814–2827 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research work of H. Wang is partially supported by the National Natural Science Foundation of China (Grant Nos. 11871428 and 12071214), and the Natural Science Foundation for Colleges and Universities of Jiangsu Province of China (Grant No. 20KJB110011). Research work of J. Yan is supported by the National Science Foundation (Grant No. DMS-1620335) and the Simons Foundation (Grant No. 637716). Research work of X. Zhong is partially supported by the National Natural Science Foundation of China (Grant Nos. 11871428 and 12272347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **nghui Zhong.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The authors have no relevant financial or non-financial interests to disclose.

Additional information

This paper is dedicated to the memory of Professor Ching-Shan Chou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, H., Yan, J. et al. Superconvergence of Direct Discontinuous Galerkin Methods: Eigen-structure Analysis Based on Fourier Approach. Commun. Appl. Math. Comput. 6, 257–278 (2024). https://doi.org/10.1007/s42967-022-00246-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42967-022-00246-6

Keywords

Mathematics Subject Classification

Navigation