Log in

Superconvergence analysis of local discontinuous Galerkin methods for linear convection–diffusion equations in one space dimension

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the superconvergence study of the local discontinuous Galerkin (LDG) method for one-dimensional time-dependent linear convection–diffusion equations, where the convection flux is taken as the upwind flux, while the diffusion fluxes chosen as the alternating fluxes. Superconvergence properties for both the solution itself and auxiliary variables are established. Precisely, we prove that, the LDG solutions are superconvergent with an order of \(k+2\) towards a particular projection of the exact solution and the auxiliary variable, and thus a \(k+1\)-th order superconvergence for the derivative approximation and a \(k+2\)-th order superconvergence for the function value approximation at a class of Radau points are obtained. Especially, we show that the convergence rate of the derivative approximation for the exact solution can reach \(k+2\) when the convection flux is the same as the diffusion flux, two order higher than the optimal convergence rate. Furthermore, a \(2k+1\)-th order superconvergent for the errors of the numerical fluxes at mesh nodes as well as for the cell averages, is also obtained under some suitable initial discretization. Numerical experiments indicate that most of our theoretical findings are optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adjerid S, Massey TC (2006) Superconvergence of discontinuous Galerkin solutions for a nonlinear scalar hyperbolic problem. Comput Methods Appl Mech Eng 195:3331–3346

    Article  MathSciNet  Google Scholar 

  • Adjerid S, Weinhart T (2009) Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems. Comput Methods Appl Mech Eng 198:3113–3129

    Article  MathSciNet  Google Scholar 

  • Adjerid S, Weinhart T (2011) Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems. Math Comput 80:1335–1367

    Article  MathSciNet  Google Scholar 

  • Adjerid S, Devine KD, Flaherty JE, Krivodonova L (2002) A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput Methods Appl Mech Eng 191:1097–1112

    Article  MathSciNet  Google Scholar 

  • Baker G, Dougalis VA, Karakashian OA (1983) Convergence of Galerkin approximations for Korteweg–de Vries equation. Math Comput 40:419–433

    Article  MathSciNet  Google Scholar 

  • Bassi F, Rebay S (1997) A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J Comput Phys 131:267–279

    Article  MathSciNet  Google Scholar 

  • Cao W, Huang Q (2017) Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J Sci Comput 72:761–791

    Article  MathSciNet  Google Scholar 

  • Cao W, Zhang Z (2016) Superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. Math Comput 85:63–84

    Article  MathSciNet  Google Scholar 

  • Cao W, Zhang Z, Zou Q (2014) Superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J Numer Anal 5:2555–2573

    Article  MathSciNet  Google Scholar 

  • Cao W, Shu C-W, Yang Yang, Zhang Z (2015) Superconvergence of discontinuous Galerkin method for 2-D hyperbolic equations. SIAM J Numer Anal 53:1651–1671

    Article  MathSciNet  Google Scholar 

  • Cao W, Li D, Yang Y, Zhang Z (2017) Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM Math Model Numer Anal 51:467–486

    Article  MathSciNet  Google Scholar 

  • Cao W, Shu C-W, Yang Y, Zhang Z (2018) Superconvergence of discontinuous Galerkin method for nonlinear hyperbolic equations. SIAM J Numer Anal 56:732–765

    Article  MathSciNet  Google Scholar 

  • Castillo P (2003) A superconvergence result for discontinuous Galerkin methods applied to elliptic problems. Comput Methods Appl Mech Eng 192:4675–4685

    Article  MathSciNet  Google Scholar 

  • Celiker F, Cockburn B (2007) Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection–diffusion problems in one space dimension. Math Comput 76:67–96

    Article  MathSciNet  Google Scholar 

  • Chen C, Hu S (2013) The highest order superconvergence for bi-\(k\) degree rectangular elements at nodes—a proof of \(2k\)-conjecture. Math Comput 82:1337–1355

    Article  MathSciNet  Google Scholar 

  • Cheng Y, Shu C-W (2008) Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J Comput Phys 227:9612–9627

    Article  MathSciNet  Google Scholar 

  • Cheng Y, Shu C-W (2010) Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J Numer Anal 47:4044–4072

    Article  MathSciNet  Google Scholar 

  • Cockburn B, Shu C-W (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws, II: general framework. Math Comput 52:411–435

    MathSciNet  MATH  Google Scholar 

  • Cockburn B, Shu C-W (1998a) The Runge–Kutta discontinuous Galerkin method for conservation laws, V: multidimensional systems. J Comput Phys 141:199–224

    Article  MathSciNet  Google Scholar 

  • Cockburn B, Shu C-W (1998b) The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J Numer Anal 35:2440–2463

    Article  MathSciNet  Google Scholar 

  • Cockburn B, Lin S, Shu C-W (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws, III: one dimensioal systems. J Comput Phys 84:90–113

    Article  MathSciNet  Google Scholar 

  • Cockburn B, Hou S, Shu C-W (1990) The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws, IV: the multidimensional case. Math Comput 54:545–581

    MathSciNet  MATH  Google Scholar 

  • Dong B, Shu C-W (2009) Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J Numer Anal 47:3240–3268

    Article  MathSciNet  Google Scholar 

  • Gottlieb S, Shu C, Tadmor E (2001) Strong stability-preserving high-order time discretization methods. SIAM Rev 43:89–112

    Article  MathSciNet  Google Scholar 

  • Guo L, Yang Y (2017) Superconvergence of discontinuous Galerkin methods for hyperbolic equations with singular initial data. Int J Numer Anal Model 14:342–354

    MathSciNet  MATH  Google Scholar 

  • Guo W, Zhong X, Qiu J (2013) Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: eigen-structure analysis based on Fourier approach. J Comput Phys 235:458–485

    Article  MathSciNet  Google Scholar 

  • Hufford C, **ng Y (2014) Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg–de Vries equation. J Comput Appl Math 255:441–455

    Article  MathSciNet  Google Scholar 

  • Meng X, Shu C-W, Zhang Q, Wu B (2012a) Superconvergence of Discontinuous Galerkin method for scalar nonlinear conservation laws in one space dimension. SIAM J Numer Anal 50:2336–2356

    Article  MathSciNet  Google Scholar 

  • Reed WH, Hill TR (1973) Triangular mesh for neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos, NM

  • **a Y, Xu Y, Shu C-W (2007) Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J Comput Phys 227:472–491

    Article  MathSciNet  Google Scholar 

  • Xu Y, Shu C-W (2004) Local discontinuous Galerkin methods for three classes of nonlinear wave equations. J Comput Math 22:250–274

    MathSciNet  MATH  Google Scholar 

  • Xu Y, Shu C-W (2012) Optimal error estimates of the semi-discrete local discontinuous Galerkin methods for high order wave equations. SIAM J Numer Anal 50:79–104

    Article  MathSciNet  Google Scholar 

  • Yan J, Shu C-W (2002) A local discontinuous Galerkin method for KdV type equations. SIAM J Numer Anal 40:769–791

    Article  MathSciNet  Google Scholar 

  • Yang Y, Shu C-W (2012) Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J Numer Anal 50:3110–3133

    Article  MathSciNet  Google Scholar 

  • Yang Y, Shu C-W (2015) Analysis of sharp superconvergence of local discontinuous Galerkin method for one-dimensional linear parabolic equations. J Comput Math 33:323–340

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **angling Chen.

Additional information

Communicated by Raphaéle Herbin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of J. Zhang is partially supported by NSF of China (No. 11461012), Guizhou University of Finance and Economics (No. 2017XZD01) and Guizhou province university science and technology top talents project (No. 2018-047).

The work of X. Chen is partially supported by the construct program of the key discipline in Hunan province and the opening project of Guangdong province key laboratory of computational science at the Sun Yat-sen University (No. 2018007).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, X. Superconvergence analysis of local discontinuous Galerkin methods for linear convection–diffusion equations in one space dimension. Comp. Appl. Math. 38, 15 (2019). https://doi.org/10.1007/s40314-019-0777-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0777-9

Keywords

Mathematics Subject Classification

Navigation