Log in

A Novel Method to Estimate the System Dam** After Generator Trip**

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

Generator trip** strategies are generally decided by offline transient stability analysis. However, traditional methods can hardly ensure dynamic stability after GT. Simulation tests show that GT strategies change the topology and the state variables of a power system, which may weaken the system dam** after GT. In order to estimate the system dam**, this paper proposes a time-varying linearized model under unsteady states based on the virtual equilibrium point (VEP) theory. Then, the changes in dynamic characteristics caused by GT can be represented by the eigenvalues at VEPs before and after GT. An inertia equivalence system is mathematically formulated to analyze the effects of generator inertia, dam** ratio, and controllers. Two indices are designed to estimate the system dam** changes. Based on the indices, a framework is proposed to improve the current GT strategy decision-making system. The sensitivity analysis and the fault scanning verify the effectiveness and robustness of the proposed method and indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GT:

Generator trip**

EP:

Equilibrium point

VEP:

Virtual equilibrium point

LSM:

Least square method

COI:

Center of inertia

\(-\) :

The time before generator trip**

\(+\) :

The time after generator trip**

A:

Variables or parameters of COI A

B:

Variables or parameters of COI B

i :

Variables or parameters in cluster A

j :

Variables or parameters in cluster B

x :

Variables of the tripped generators

e :

Variables of the rest generators

\({\varvec{x}}\) :

State variables of generators

\(\varvec{\delta }\) :

Rotor angle of generators, rad

\(\omega\) :

Angular velocity of the rotor, rad/s

\({\omega }_{{\text{A}}}\) :

\(= \sum\nolimits_{{{i} \in {\text{cluster A}}}} {{\omega }_{{i}} {M}_{{i}} } /{M}_{{\text{A}}}\)

\(\varvec{\omega }_{{\text{B}}}\) :

\(= \sum\nolimits_{{{j} \in {\text{cluster A}}}} {{\omega }_{{j}} \varvec{M}_{{j}} } /{M}_{{\text{B}}}\)

\({\xi }\) :

Incoherence component of \({\omega }\)

\({\lambda }\) :

Eigenvalue of a matrix

\(\Delta {\sigma }\) :

Change of the real part of the critical eigenvalue

f :

A set of differential equations describing system dynamic characteristics

g :

A set of algebraic equations relating state and input variables to output variables

\({t}_{u}\) :

The time of fault clearing

\(t_{{\text{G}}}^{{}}\) :

The time of generator trip**

\({\varvec{A}}_{xx}\) :

\(= \partial {\varvec{f}}_{x} /\partial {\varvec{x}}_{x}\) in \(t_{{\text{G}}}^{ - }\), upper-left part of matrix

\({\varvec{A}}_{xe}\) :

\(= \partial {\varvec{f}}_{x} /\partial {\varvec{x}}_{e}\) in \(t_{{\text{G}}}^{ - }\), upper-right part of matrix

\({\varvec{A}}_{ex}\) :

\(= \partial {\varvec{f}}_{e} /\partial {\varvec{x}}_{x}\) in \(t_{{\text{G}}}^{ - }\), bottom-left part of matrix

\({\varvec{A}}_{ee}\) :

\(= \partial {\varvec{f}}_{e} /\partial {\varvec{x}}_{e}\) in \(t_{{\text{G}}}^{ - }\), bottom-right part of matrix

\({\varvec{A}}_{x}\) :

\(= \partial {\varvec{f}}_{x} /\partial {\varvec{x}}_{x}\) in \(t_{{\text{G}}}^{ - }\), diagonal part of state matrix

\({\varvec{A}}_{e}\) :

\(= \partial {\varvec{f}}_{e} /\partial {\varvec{x}}_{e}\) in \(t_{{\text{G}}}^{ - }\), diagonal part of state matrix

\({P}_{e}\) :

Electromagnetic power of generators

\({P}_{m}\) :

Mechanical power of generators

\({K}_{{{ij}}}\) :

\(= \partial {P}_{{{ei}}} /\partial {\delta }_{{j}}\)

\(\varvec{M}\) :

Inertia of generators

\({M}_{{\text{A}}}\) :

\(= \sum\nolimits_{{i \in \;{\text{cluster A}}}} {M_{i} }\)

\({M}_{{\text{B}}}\) :

\(= \sum\nolimits_{{j \in \;{\text{cluster B}}}} {M_{j} }\)

\(D\) :

Dam** ratio of generators

\(D_{{\text{A}}}\) :

\(= \sum\nolimits_{{i \in \;{\text{cluster A}}}} {D_{i} \omega _{i} \omega _{{\text{A}}} }\)

\(D_{{\text{B}}}\) :

\(= \sum\nolimits_{{j \in \;{\text{cluster B}}}} {D_{j} {\text{ }}\omega _{j} {\text{ }}\omega _{{\text{B}}} }\)

\({D}_{{{\Sigma A}}}\) :

\(= \sum\nolimits_{{i \in \;{\text{cluster A}}}} {D_{i} \;\omega _{i} }\)

\(\varvec{D}_{{{\Sigma B}}}\) :

\(= \sum\nolimits_{{i \in \;{\text{cluster B}}}} {D_{j} {\text{ }}\omega _{j} }\)

\(I_{C}\) :

Proposed index to assess the influence of the tripped generator

\(I_{D}\) :

Proposed index to estimate the changes of system dam**

References

  1. Fennell E, Kozminski K, Bajpai M et al (1998) Sequential trip** of steam turbine generators: working group report[J]. IEEE Trans Ind Appl 34(6):1411–1418

    Article  Google Scholar 

  2. Karady GG, Gu J (2007) A hybrid method for generator trip**[J]. IEEE Power Eng Rev 22(5):66–66

    Article  Google Scholar 

  3. Xue Y (2007) Towards space-time cooperative defence framework against blackouts in China[C]. 2007 IEEE power engineering society general meeting. IEEE, New York, pp 1–6

    Google Scholar 

  4. Doudna JH (1988) Application and implementation of fast valving and generator trip** schemes at gerald gentlemen station[J]. IEEE Trans Power Syst 3(3):1155–1166

    Article  Google Scholar 

  5. Fouad AA, Ghafurian A, Nodehi K et al (1986) Calculation of generation-shedding requirements of the BC hydro system using transient energy functions[J]. IEEE Trans Power Syst 1(2):17–23

    Article  Google Scholar 

  6. Oh SC, Lee HI, Lee YH et al (2018) A novel SIME configuration scheme correlating generator trip** for transient stability assessment[J]. J Electr Eng Technol 13(5):1798–1806

    Google Scholar 

  7. Yang H, Zhang W, Shi F et al (2019) PMU-based model-free method for transient instability prediction and emergency generator-shedding control[J]. Int J Electr Power Energy Syst 105:381–393

    Article  Google Scholar 

  8. Sun Z, Cai G, Yang D et al (2019) Application of power system energy structures to track dominated oscillation paths and generator dam** contribution during low-frequency oscillations[J]. Int J Electr Power Energy Syst 104:52–68

    Article  Google Scholar 

  9. Hakim L, Kubokawa J, Yuan Y et al (2009) A study on the effect of generation shedding to total transfer capability by means of transient stability constrained optimal power flow[J]. IEEE Trans Power Syst 24(1):347–355

    Article  Google Scholar 

  10. Gan G, Zhu Z, Geng G et al (2018) An efficient parallel sequential approach for transient stability emergency control of large-scale power system[J]. IEEE Trans Power Syst 33(6):5854–5864

    Article  Google Scholar 

  11. Amjady N, Majedi SF (2007) Transient stability prediction by a hybrid intelligent system[J]. IEEE Trans Power Syst 22(3):1275–1283

    Article  Google Scholar 

  12. Baydokhty ME, Eidiani M, Zeynal H et al (2012) Efficient generator trip** approach with minimum generation curtailment based on fuzzy system rotor angle prediction[J]. Prz Elektroteh 88(9a):266–271

    Google Scholar 

  13. Xue Y (1997) Practically negative effects of emergency controls[C]. IFAC Proc Vol. https://doi.org/10.1016/S1474-6670(17)46472-X

    Article  Google Scholar 

  14. Mozina CJ (2010) Lessons learned from generator trip** events[J]. IEEE Ind Appl Mag 16(5):29–36

    Article  Google Scholar 

  15. Tsai SH, Lee CY, Wu YK (2010) Efficient calculation of critical eigenvalues in large power systems using the real variant of the jacobi-davidson QR method [J]. IET Gener Transm Distrib. https://doi.org/10.1049/iet-gtd.2009.0323

    Article  Google Scholar 

  16. Du W, Wang H (2015) Dam** torque analysis theory and method of power system low frequency oscillationi[M]. Science Press, Bei**g

    Google Scholar 

  17. Wang G, Zheng X, Guo X et al (2018) Mechanism analysis and suppression method of ultra-low-frequency oscillations caused by hydropower units[J]. Int J Electr Power Energy Syst 103:102–114

    Article  Google Scholar 

  18. Zhu S, Vittal V, Kliemann W et al (2001) Analyzing dynamic performance of power systems over parameter space using normal forms of vector fields-part II: comparison of the system structure [J]. IEEE Trans Power Syst. https://doi.org/10.1109/MPER.2001.4311435

    Article  Google Scholar 

  19. Pariz N, Shanechi HM, Vaahedi E et al (2003) Explaining and validating stressed power systems behavior using modal series[J]. Power Syst IEEE Trans 18(2):778–785

    Article  Google Scholar 

  20. Wang Z, Huang Q (2017) A closed normal form solution under near-resonant modal interaction in power systems[J]. IEEE Trans Power Syst. https://doi.org/10.1109/TPWRS.2017.2679121

    Article  Google Scholar 

  21. Ali ES (2014) Optimization of power system stabilizers using BAT search algorithm[J]. Int J Electr Power Energy Syst 61:683–690

    Article  Google Scholar 

  22. Abd-Elazim SM, Ali ES (2015) A hybrid particle swarm optimization and bacterial foraging for power system stability enhancement[J]. Complexity 21(2):245–255

    Article  MathSciNet  Google Scholar 

  23. Ali ES, Abd-Elazim SM (2015) Stability improvement of multimachine power system via new coordinated design of PSSs and SVC[J]. Complexity 21(2):256–266

    Article  MathSciNet  Google Scholar 

  24. Kundur P (1994) Power system stability and control[M]. McGraw-Hill, New York

    Google Scholar 

  25. Bin Z, Xue Y (2019) A method to extract instantaneous features of low frequency oscillation based on trajectory section eigenvalues[J]. J Mod Power Syst Clean Energy 7(4):753–766

    Article  Google Scholar 

  26. Xue Y, Bin Z (2020) Analysis of mode interaction in ultra-low frequency oscillation based on trajectory eigenvalue[J]. J Mod Power Syst Clean Energy 8(6):1208–1220

    Article  Google Scholar 

  27. Xue Y, Bin Z (2019) Trajectory section eigenvalue method for nonlinear time-varying power system[J]. Int J Electr Power Energy Syst 107:321–331

    Article  Google Scholar 

  28. Wang XF, Song Y, Irving M (2010) Modern power systems analysis[M]. Springer, Cham

    Google Scholar 

  29. Pai MA (1989) Energy function analysis for power system stability [M]. Kluwer Academic Publishers Group, USA

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the fast analysis of cascading failures by integrating model-and data-driven methods Project (YKJ202108). We would like to especially thank ** Xu for coding the fundamental module of the method.

Funding

Nan**g Institute of Technology (CN), YKJ202108, Yun Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Fault scenario 2 is set to be a three-phase short-circuit in bus-27. The fault during time is 0.17 s. Fault scenario 3 is set to be a three-phase short-circuit in bus-27. The fault during time is 0.18 s, without GT control.

The critical clearing time of fault scenario 1 is 0.17 s. In other words, the system is transiently stable when the duration time of the fault is less than 0.17 s, as shown in Fig. 8.

Fig. 8
figure 8

Trajectories of rotor angles in fault scenario 2

G9 and G5 are highlighted by blue and red curves, respectively.

Once the fault duration time is longer than 0.18 s, the system would lose transient stability in the first swing or the second swing, as shown in Fig. 9.

Fig. 9
figure 9

Trajectories of rotor angles in fault scenario 3

G9 and G5 are highlighted by blue and red curves, respectively. Obviously, G9 is identified to be the critical generator. In the view of the current GT decision-making system, G9 would be chosen to trip.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin, ZJ., Liu, Y., Hao, SP. et al. A Novel Method to Estimate the System Dam** After Generator Trip**. J. Electr. Eng. Technol. 18, 843–855 (2023). https://doi.org/10.1007/s42835-022-01261-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-022-01261-6

Keywords

Navigation