Log in

Ciliate diversity in rodrigo de freitas lagoon (Rio de Janeiro, Brazil) from an integrative standpoint

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Rodrigo de Freitas Lagoon is a highly eutrophic lacustrine system and has one of the longest histories of exploration and anthropic alteration in Brazil. Despite its relevance, limited studies explored the diversity of micro-eukaryotes in the lagoon. Ciliates (Alveolata, Ciliophora) are overlooked in environmental microbiology, especially in tropical and subtropical ecosystems, resulting in limited knowledge about their diversity and functional relevance in South American habitats, particularly in coastal lagoons. To fill this gap, here we investigated the diversity of ciliates in a brackish coastal lagoon in an urban area of Rio de Janeiro, Brazil, applying and comparing the performance of morphological and metabarcoding approaches. The metabarcoding analysis, based on high-throughput sequencing of the hipervariable region V4 of the 18S rRNA genes detected 37 molecular operational taxonomic units (MOTUs) assigned to Ciliophora, representing only about a half (56.9%) of the diversity detected by microscopy, which counted 65 ciliate morphotypes. The most representative classes in both approaches were Spirotrichea and Oligohymenophorea. The metabarcoding analysis revealed that 35.3% of the ciliate MOTUs had less than 97% similarity to available sequences in the NCBI database, indicating that more than one-third of these MOTUs potentially represents still not represented or undescribed ciliate species in current databases. Our findings indicate that metabarcoding techniques can significantly enhance the comprehension of ciliate diversity in tropical environments, but the scarcity of reference sequences of brackish ciliates in molecular databases represents a challenge to the taxonomic assignment of the MOTUs. This study provides new insights into the diversity of ciliates in a threatened coastal lagoon, revealing a vast array of still unknown and rare ciliate taxonomic units in tropical environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Debroas D, Domaizon I, Humbert JF et al (2017) Overview of freshwater microbial eukaryotes diversity: A first analysis of publicly available metabarcoding data. FEMS Microbiol Ecol 93(4):fix023. https://doi.org/10.1093/femsec/fix023

    Article  CAS  Google Scholar 

  2. Finlay BJ, Fenchel T (1996) Ecology: Role of ciliates in the natural environment. In: Hausmann K, Bradbury PC (eds) Ciliates: Cells as Organisms. Gustav Fischer Verlag, Germany, pp 417–440

    Google Scholar 

  3. Ritter CD, Machado AF, Ribeiro KF, Dunthorn M (2021) Metabarcoding advances for ecology and biogeography of neotropical protists: What do we know, where do we go? Biota Neotrop 21(4):e20211214. https://doi.org/10.1590/1676-0611-BN-2021-1214

  4. Campello-Nunes PH, Fernandes N, Schlegel M, Silva-Neto ID (2015) Description and phylogenetic position of Corlissina maricaensis gen. nov., sp. nov. (Karyorelictea, Geleiidae), a novel interstitial ciliate from Brazil, with redefinition of the family Geleiidae. Int J Syst Evol Microbiol 65:4297–4308. https://doi.org/10.1099/ijsem.0.000579

    Article  CAS  PubMed  Google Scholar 

  5. Campello-Nunes PH, Fernandes NM, Szokoli F et al (2018) Morphology and Phylogenetic Position of Gruberia lanceolata (Gruber 1884) (Ciliophora, Heterotrichea) from Rio de Janeiro, Brazil. J Eukaryot Microbiol 65:902–912. https://doi.org/10.1111/jeu.12636

    Article  CAS  PubMed  Google Scholar 

  6. Campello-Nunes PH, Silva-Neto ID, Sales MHO et al (2022) Morphological and phylogenetic investigations shed light on evolutionary relationships of the enigmatic genus Copemetopus (Ciliophora, Alveolata), with the proposal of Copemetopus verae sp. nov. Eur J Protistol 83:125878. https://doi.org/10.1016/j.ejop.2022.125878

    Article  PubMed  Google Scholar 

  7. Campello-Nunes PH, Fernandes NM, Szokoli F et al (2020) Parablepharisma (Ciliophora) is not a Heterotrich: A Phylogenetic and Morphological Study with the Proposal of New Taxa. Protist 171:125716. https://doi.org/10.1016/j.protis.2020.125716

    Article  CAS  PubMed  Google Scholar 

  8. Fernandes NM, Campello-Nunes PH, Paiva TS et al (2021) Ciliate Diversity From Aquatic Environments in the Brazilian Atlantic Forest as Revealed by High-Throughput DNA Sequencing. Microb Ecol 81:630–643. https://doi.org/10.1007/s00248-020-01612-8

    Article  PubMed  Google Scholar 

  9. Paiva TS, Silva-Neto ID (2004) Ciliate protists from Cabiúnas Lagoon (Restinga de Jurubatiba, Macaé, Rio de Janeiro) with emphasis on water quality indicator species and description of Oxytricha marcili sp. n. Braz J Biol 64:465–478. https://doi.org/10.1590/S1519-69842004000300010

    Article  CAS  PubMed  Google Scholar 

  10. Paiva TDS, Silva-Neto ID (2006) Pseudourostyla pelotensis sp. nov. (Ciliophora, Stichotrichia, Urostylida): a new psammophilic ciliate from the southern Brazil. Zootaxa 1247:43–58. https://doi.org/10.11646/zootaxa.1247.1.4

    Article  Google Scholar 

  11. Paiva TDS, Silva-Neto ID (2007) Morphology and morphogenesis of Strongylidium pseudocrassum Wang and Nie, 1935, with redefinition of Strongylidium Sterki, 1878 (Protista: Ciliophora: Stichotrichia). Zootaxa 1559:31–57. https://doi.org/10.11646/zootaxa.1559.1.2

    Article  Google Scholar 

  12. Paiva TDS, Silva-Neto ID (2004) Comparative morphometric study of three species of Apoamphisiella Foissner, 1997 (Ciliophora: Hypotrichea) from Brazilian locations, including a description of Apoamphisiella foiss. Zootaxa 505:1–26. https://doi.org/10.5281/zenodo.157497

    Article  Google Scholar 

  13. Paiva TDS, Silva-Neto ID (2005) Deviata estevesi sp. n. (Ciliophora: Spirotrichea), a new ciliate protist from a restinga lagoon in Rio de Janeiro, Brazil. Acta Protozool 44:351–362

    Google Scholar 

  14. Paiva TDS, Silva-Neto ID (2003) Optical microscopy observations and diagnosis of Apoamphisiella jurubatiba sp. n. (Ciliophora: Hypotrichea). Acta Microscopica 12(B):287–288

    Google Scholar 

  15. Paiva TDS, Küppers GC, Silva-Neto ID (2016) Morphology and divisional morphogenesis of the brackish water ciliate Novistrombidium rufinoi sp. nov. (Ciliophora: Oligotrichia) from Brazil. Rev Bras Zoociências 17:20–32

    Google Scholar 

  16. Esteves FDA, Caliman A, Santangelo JM et al (2008) Neotropical coastal lagoons: An appraisal of their biodiversity, functioning, threats and conservation management. Braz J Biol 68:967–981. https://doi.org/10.1590/S1519-69842008000500006

    Article  CAS  PubMed  Google Scholar 

  17. Wit R (2011) Biodiversity of coastal lagoon ecosystems and their vulnerability to global change. In: Grillo O, Venora G (eds) Ecosystems biodiversity. InThec, Rijeka, Croatia, pp 29–40

  18. Gimmler A, Stoeck T (2015) Mining environmental high-throughput sequence data sets to identify divergent amplicon clusters for phylogenetic reconstruction and morphotype visualization. Environ Microbiol Rep 7:679–686. https://doi.org/10.1111/1758-2229.12307

    Article  CAS  PubMed  Google Scholar 

  19. Stoeck T, Behnke A, Christen R et al (2009) Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol 7:72. https://doi.org/10.1186/1741-7007-7-72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stoeck T, Bass D, Nebel M et al (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19:21–31. https://doi.org/10.1111/j.1365-294X.2009.04480.x

    Article  CAS  PubMed  Google Scholar 

  21. Medinger R, Nolte V, Pandey RV et al (2010) Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol 19:32–40. https://doi.org/10.1111/j.1365-294X.2009.04478.x

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jacquiod S, Stenbæk J, Santos SS et al (2016) Metagenomes provide valuable comparative information on soil microeukaryotes. Res Microbiol 167:436–450. https://doi.org/10.1016/j.resmic.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  23. Boscaro V, Santoferrara LF, Zhang Q et al (2018) EukRef-Ciliophora: a manually curated, phylogeny-based database of small subunit rRNA gene sequences of ciliates. Environ Microbiol 20:2218–2230. https://doi.org/10.1111/1462-2920.14264

    Article  CAS  PubMed  Google Scholar 

  24. Gimmler A, Korn R, De Vargas C et al (2016) The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci Rep 6(1):33555. https://doi.org/10.1038/srep33555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Canals O, Obiol A, Muhovic I et al (2020) Ciliate diversity and distribution across horizontal and vertical scales in the open ocean. Mol Ecol 29:2824–2839. https://doi.org/10.1111/mec.15528

    Article  CAS  PubMed  Google Scholar 

  26. Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes. PLoS ONE 4(7):e6372. https://doi.org/10.1371/journal.pone.0006372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stoeck T, Breiner HW, Filker S et al (2014) A morphogenetic survey on ciliate plankton from a mountain lake pinpoints the necessity of lineage-specific barcode markers in microbial ecology. Environ Microbiol 16:430–444. https://doi.org/10.1111/1462-2920.12194

    Article  CAS  PubMed  Google Scholar 

  28. Santoferrara LF, Grattepanche J-D, Katz LA, McManus GB (2016) Patterns and processes in microbial biogeography: do molecules and morphologies give the same answers? ISME J 10:1779–1790. https://doi.org/10.1038/ismej.2015.224

    Article  PubMed  PubMed Central  Google Scholar 

  29. Boscaro V, Rossi A, Vannini C et al (2017) Strengths and Biases of High-Throughput Sequencing Data in the Characterization of Freshwater Ciliate Microbiomes. Microb Ecol 73:865–875. https://doi.org/10.1007/s00248-016-0912-8

    Article  CAS  PubMed  Google Scholar 

  30. de Vargas C, Audic S, Henry N et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348(6237):12616051–126160511

    Article  Google Scholar 

  31. Abad D, Albaina A, Aguirre M et al (2016) Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar Biol 163:1–13. https://doi.org/10.1007/s00227-016-2920-0

    Article  Google Scholar 

  32. Freeland JR (2016) The importance of molecular markers and primer design when characterizing biodiversity from 1 environmental DNA (eDNA) 2. Genome 60:358–374

    Article  PubMed  Google Scholar 

  33. Bachy C, Dolan JR, López-García P et al (2013) Accuracy of protist diversity assessments: Morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. ISME J 7:244–255. https://doi.org/10.1038/ismej.2012.106

    Article  CAS  PubMed  Google Scholar 

  34. Venter PC, Nitsche F, Scherwass A, Arndt H (2018) Discrepancies between molecular and morphological databases of soil ciliates studied for temperate grasslands of Central Europe. Protist 169:521–538. https://doi.org/10.1016/j.protis.2018.04.001

    Article  PubMed  Google Scholar 

  35. Santi I, Kasapidis P, Karakassis I, Pitta P (2021) A comparison of DNA metabarcoding and microscopy methodologies for the study of aquatic microbial eukaryotes. Diversity (Basel) 13(5):180. https://doi.org/10.3390/d13050180

    Article  CAS  Google Scholar 

  36. Foissner W (2014) An update of “basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa.” Int J Syst Evol Microbiol 64:271–292. https://doi.org/10.1099/ijs.0.057893-0

    Article  PubMed  Google Scholar 

  37. Dieckmann J (1995) An improved protargol impregnation for ciliates yielding reproducible results. Eur J Protistol 31(4):372–382

    Article  Google Scholar 

  38. Pan X, Bourland WA, Song W (2013) Protargol Synthesis: An In-house Protocol. J Eukaryot Microbiol 60:609–614. https://doi.org/10.1111/jeu.12067

    Article  CAS  PubMed  Google Scholar 

  39. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al (2018) Community ecology package. R package version. https://www.researchgate.net/publication/313502495_Vegan_Community_Ecology_Package. Accessed 26 June 2023

  40. Elwood HJ, Olsen GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Mol Biol Evol 2:399–410. https://doi.org/10.1093/oxfordjournals.molbev.a040362

    Article  CAS  PubMed  Google Scholar 

  41. Cheung MK, Au CH, Chu KH et al (2010) Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J 4:1053–1059. https://doi.org/10.1038/ismej.2010.26

    Article  PubMed  Google Scholar 

  42. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rideout JR, He Y, Navas-Molina JA et al (2014) Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2:e545. https://doi.org/10.7717/peerj.545

    Article  PubMed  PubMed Central  Google Scholar 

  45. Quast C, Pruesse E, Yilmaz P et al (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guillou L, Bachar D, Audic S et al (2012) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:D597–D604. https://doi.org/10.1093/nar/gks1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McMurdie PJ, Holmes S (2013) phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wilkinson L (2011) Venn and Euler Data Diagrams. https://www.researchgate.net/publication/228680934_Venn_and_Euler_Data_Diagrams. Accessed 26 June 2023

  51. Rajter L, Dunthorn M (2021) Ciliate SSU-rDNA reference alignments and trees for phylogenetic placements of metabarcoding data. Metabarcoding Metagenom 5:121–132. https://doi.org/10.3897/MBMG.5.69602

    Article  Google Scholar 

  52. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108

    Article  CAS  PubMed  Google Scholar 

  53. Gouy M, Guindon S, Gascuel O (2010) SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Mol Biol Evol 27:221–224. https://doi.org/10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  54. Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res 44:W232–W235. https://doi.org/10.1093/nar/gkw256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Letunic I, Bork P (2019) Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi.org/10.1093/nar/gkz239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Basuri CK, Pazhaniyappan E, Munnooru K et al (2020) Composition and distribution of planktonic ciliates with indications to water quality in a shallow hypersaline lagoon (Pulicat Lake, India). Environ Sci Pollut Res 27:18303–18316. https://doi.org/10.1007/s11356-020-08177-6

    Article  CAS  Google Scholar 

  57. Bulit C, Díaz-Ávalos C, Montagnes DJS (2009) Scaling patterns of plankton diversity: a study of ciliates in a tropical coastal lagoon. Hydrobiologia 624:29–44. https://doi.org/10.1007/s10750-008-9664-x

    Article  Google Scholar 

  58. Lynn DH (2008) The ciliated protozoa: characterization, classification, and guide to the literature, 3rd edn. Springer, Canada

    Google Scholar 

  59. Oliveira L, Nascimento R, Krau L, Miranda A (1957) Observações hidrobiológicas e mortandade de peixes na Lagoa Rodrigo de Freitas. Mem Inst Oswaldo Cruz 55:211–271

    Article  Google Scholar 

  60. Moreira MGG, Silva-Neto ID (1998) Micromorphology of predominant ciliatofauna of Rodrigo de Freitas lake, Rio de Janeiro. Mem Inst Oswaldo Cruz 129–129

  61. Branco CW, Domingos P, Bonecker SL (2011) Zooplankton of an urban coastal lagoon: composition and association with environmental factors and summer fish kill. Zoologia (Curitiba) 28:357–364. https://doi.org/10.1590/S1984-46702011000300010

    Article  Google Scholar 

  62. Basset A, Pinna M, Sabetta L et al (2008) Hierarchical scaling of biodiversity in lagoon ecosystems. Transit Water Bull 2:75–86. https://doi.org/10.1285/i1825229Xv2n3p75

    Article  Google Scholar 

  63. Creer S, Fonseca VG, Dl P et al (2010) Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Mol Ecol 19:4–20. https://doi.org/10.1111/j.1365-294X.2009.04473.x

    Article  PubMed  Google Scholar 

  64. Bates ST, Clemente JC, Flores GE et al (2013) Global biogeography of highly diverse protistan communities in soil. ISME J 7:652–659. https://doi.org/10.1038/ismej.2012.147

    Article  CAS  PubMed  Google Scholar 

  65. Mahé F, de Vargas C, Bass D et al (2017) Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol 1:0091. https://doi.org/10.1038/s41559-017-0091

    Article  Google Scholar 

  66. de Araujo ASF, Mendes LW, Lemos LN et al (2018) Protist species richness and soil microbiome complexity increase towards climax vegetation in the Brazilian Cerrado. Commun Biol 1:135. https://doi.org/10.1038/s42003-018-0129-0

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ritter CD, Zizka A, Roger F et al (2018) High-throughput metabarcoding reveals the effect of physicochemical soil properties on soil and litter biodiversity and community turnover across Amazonia. PeerJ 6:e5661. https://doi.org/10.7717/peerj.5661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ritter CD, Häggqvist S, Karlsson D et al (2019) Biodiversity assessments in the 21st century: the potential of insect traps to complement environmental samples for estimating eukaryotic and prokaryotic diversity using high-throughput DNA metabarcoding. Genome 62:147–159. https://doi.org/10.1139/gen-2018-0096

    Article  PubMed  Google Scholar 

  69. Ritter CD, Zizka A, Barnes C et al (2019) Locality or habitat? Exploring predictors of biodiversity in Amazonia. Ecography 42:321–333. https://doi.org/10.1111/ecog.03833

    Article  Google Scholar 

  70. Zinger L, Bonin A, Alsos IG et al (2019) DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol Ecol 28:1857–1862. https://doi.org/10.1111/mec.15060

    Article  PubMed  Google Scholar 

  71. Lentendu G, Mahé F, Bass D et al (2018) Consistent patterns of high alpha and low beta diversity in tropical parasitic and free-living protists. Mol Ecol 27:2846–2857. https://doi.org/10.1111/mec.14731

    Article  PubMed  Google Scholar 

  72. Simão TLL, Borges AG, Gano KA et al (2017) Characterization of ciliate diversity in bromeliad tank waters from the Brazilian Atlantic Forest. Eur J Protistol 61:359–365. https://doi.org/10.1016/j.ejop.2017.05.005

    Article  PubMed  Google Scholar 

  73. Filker S, Sommaruga R, Vila I, Stoeck T (2016) Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns. Mol Ecol 25:2286–2301. https://doi.org/10.1111/mec.13633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Filker S, Forster D, Weinisch L et al (2017) Transition boundaries for protistan species turnover in hypersaline waters of different biogeographic regions. Environ Microbiol 19:3186–3200. https://doi.org/10.1111/1462-2920.13805

    Article  CAS  PubMed  Google Scholar 

  75. Lentendu G, Buosi PRB, Cabral AF et al (2019) Protist biodiversity and biogeography in lakes from four Brazilian river–floodplain systems. J Eukaryot Microbiol 66:592–599. https://doi.org/10.1111/jeu.12703

    Article  PubMed  Google Scholar 

  76. Giongo A, dos Anjos Borges LG, Simão TLL et al (2022) Structure and dynamics of periphyton in a neotropical freshwater lake, with emphasis on ciliates and their relationships with bacterial taxa. Microb Ecol 86(1):187–199. https://doi.org/10.1007/s00248-022-02101-w

    Article  CAS  PubMed  Google Scholar 

  77. Santoferrara LF, Rubin E, Mcmanus GB (2018) Global and local DNA (meta)barcoding reveal new biogeography patterns in tintinnid ciliates. J Plankton Res 40:209–221. https://doi.org/10.1093/plankt/fby011

    Article  CAS  Google Scholar 

  78. Santoferrara L, Burki F, Filker S et al (2020) Perspectives from Ten Years of Protist Studies by High-Throughput Metabarcoding. J Eukaryot Microbiol 67:612–622. https://doi.org/10.1111/jeu.12813

    Article  PubMed  Google Scholar 

  79. Pawlowski J, Kelly-Quinn M, Altermatt F et al (2018) The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci Total Environ 637–638:1295–1310. https://doi.org/10.1016/j.scitotenv.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  80. Ruppert KM, Kline RJ, Rahman MS (2019) Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv 17:e00547. https://doi.org/10.1016/j.gecco.2019.e00547

    Article  Google Scholar 

  81. Telesh I, Schubert H, Skarlato S (2011) Revisiting Remane’s concept: evidence for high plankton diversity and a protistan species maximum in the horohalinicum of the Baltic Sea. Mar Ecol Prog Ser 421:1–11. https://doi.org/10.3354/meps08928

    Article  Google Scholar 

  82. Ravin NV, Mardanov AV, Skryabin KG (2015) Metagenomics as a tool for the investigation of uncultured microorganisms. Russ J Genet 51:431–439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through grants conceded to P.H.C.N. (140627/ 2019-7), T.S.P. (421766/2021-2) and I.D.S.N. (304093/2016-5; 311577/2019-9); and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) to N.M.F (E-26/202.325/2018; E-26/202.326/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemi M. Fernandes.

Ethics declarations

Competing interest

The authors state they have no conflicts of interest in this submission.

Additional information

Responsible Editor: Luis Augusto Nero

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campello-Nunes, P.H., da Silva-Neto, I.D., da S. Paiva, T. et al. Ciliate diversity in rodrigo de freitas lagoon (Rio de Janeiro, Brazil) from an integrative standpoint. Braz J Microbiol 55, 1489–1505 (2024). https://doi.org/10.1007/s42770-024-01291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-024-01291-4

Keywords

Navigation