Log in

Composition and distribution of planktonic ciliates with indications to water quality in a shallow hypersaline lagoon (Pulicat Lake, India)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Planktonic ciliate composition and distribution together with physicochemical variables were investigated in a shallow hypersaline lagoon, Pulicat, India, during three seasons, i.e., pre-monsoon (PRM), monsoon (MON), and post-monsoon (POM). The low freshwater inflow, evaporation, and closure of the lake mouth were the main factors for the hypersaline conditions in Pulicat Lake. The average depth and salinity were 1.8 ± 0.12 m (0.8 to 2.8 m) and 35.3 ± 1.68 (12.5 to 61), respectively. A total of 29 ciliate taxa belonging to 18 genera and five classes were identified. Strombidium conicum (24%) was the dominant species followed by Euplotes sp. (10.7%) and Stenosomella sp. (7.02%). Spirotrichea (84%) was the dominant class followed by Oligohymenophorea (9.6%) and Heterotrichea (5.8%). Fabrea salina, a typical species in hypersaline systems, was abundant at locations where the salinity was more than 35. Multivariate analysis using the Bray–Curtis similarity, followed by SIMPROF (Similarity Percentage Analysis), on ciliate abundance data revealed three ciliate assemblages characterizing south, central, and north of the lake at 40% similarity (SIMPROF, cophenetic correlation = 0.622, P = 5%). Both ciliate abundance and chlorophyll-a were positively correlated with salinity. Species richness and evenness were higher in the south sector when compared with those in the other two sectors. Biotic-environmental interaction through canonical correspondence analysis (CCA) inferred that the combined effects of salinity, chlorophyll-a, and nutrient levels are the key factors responsible for the distribution of the ciliate species, suggesting that ciliates can be considered to be potential bioindicators of water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Yamani F, Madhusoodhanan R, Skryabin V, Al-Said T (2019) The response of microzooplankton (tintinnid) community to salinity related environmental changes in a hypersaline marine system in the northwestern Arabian Gulf. Deep-Sea Res II Top Stud Oceanogr. https://doi.org/10.1016/j.dsr2.2019.02.005

  • Amblard C, Sime-Ngando T, Rachiq S, Bourdier G (1993) Importance of ciliated protozoa in relation to the bacterial and phytoplanktonic biomass in an oligo-mesotrophic lake, during the spring diatom bloom. Aquat Sci 55(1):1–9

    Google Scholar 

  • Anderson MJ (2001) Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci 58(3):626–639

    Google Scholar 

  • Anderson M, Gorley RNRN, Clarke K, Anderson MJ, Gorley RN, Clarke KR, Andersom MJ (2008) PERMANOVA+ for PRIMER. Guide to software and statistical methods. Primer-E, Plymouth, p 214

  • Anjusha A, Jyothibabu R, Jagadeesan L (2018) Response of microzooplankton community to the hydrographical transformations in the coastal waters off Kochi, along the southwest coast of India. Cont Shelf Res 167:111–124

    Google Scholar 

  • Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10(3):257–263

    Google Scholar 

  • Balkis N (2004) Tintinnids (Protozoa: Ciliophora) of the Büyükçekmece Bay in the Sea of Marmara. Sci Mar 68(1):33–44

    Google Scholar 

  • Biswas SN, Godhantaraman N, Rakshit D, Sarkar SK (2013) Community composition, abundance, biomass and production rates of Tintinnids (Ciliata: Protozoa) in the coastal regions of Sundarban Mangrove wetland, India. Indian J Geo-Mar Sci 42(2):163–173

    CAS  Google Scholar 

  • Brown S, Landry M, Christensen S, Garrison D, Gowing M, Bidigare R, Campbell L (2002) Microbial community dynamics and taxon-specific phytoplankton production in the Arabian Sea during the 1995 monsoon seasons. Deep-Sea Res II Top Stud Oceanogr 49(12):2345–2376

    Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER v6: user manual/tutorial. Primer-E, Plymouth, p 192

  • Clarke KR, Green RH (1988) Statistical design and analysis for a “biological effects” study. Mar Ecol Prog Ser 46(1):213–226

    Google Scholar 

  • Clark KR, Warwick RM (2001) Change in marine communities: an approach to statistical and interpretation. Plymouth Marine Laboratory, Plymouth

  • Corliss JO (1973) Protozoan ecology: a note on its current status. Am Zool 13(1):145–148

    Google Scholar 

  • Corliss JO (1979) The ciliated protozoa. Characterization, classification and guide to literature, 2nd edn. Pergamon Press. ISBN: 9781483154176, Oxford, p 472

  • Coulthard S (2008) Adapting to environmental change in artisanal fisheries—insights from a South Indian lagoon. Glob Environ Chang 18(3):479–489

    Google Scholar 

  • Curds CR (1982) British and other freshwater ciliate protozoa. Published for The Linnean Society of London and The Estuarine and Brackish Water-Sciences Association, Cambridge University Press, Cambridge

  • Dhinamala K, Pushpalatha M, Samuel T, Raveen R (2015) Spatial and temporal variations in the water quality parameters of Pulicat Lake, Tamil Nadu, India. Int J Fish Aquat Stud 3(2):255–259

    Google Scholar 

  • Elloumi J, Carrias J-F, Ayadi H, Sime-Ngando T, Boukhris M, Bouaïn A (2006) Composition and distribution of planktonic ciliates from ponds of different salinity in the solar saltwork of Sfax, Tunisia. Estuar Coast Shelf Sci 67(1–2):21–29

    Google Scholar 

  • Esteban GF, Finlay BJ (2003) Cryptic freshwater ciliates in a hypersaline lagoon. Protist 154(3–4):411–418

    Google Scholar 

  • Fenchel TOM (1980) Relation between particle size selection and clearance in suspension-feeding ciliates. Limnol Oceanogr 25(4):733–738

    Google Scholar 

  • Fenchel T, Jørgensen BB (1977) Detritus food chains of aquatic ecosystems: the role of bacteria. In: Advances in microbial ecology. Springer, Boston, MA, pp 1–58

  • Finlay BJ, Curds CR, Bamforth SS, Bafort JM (1987) Ciliated protozoa and other microorganisms from two African soda lakes (Lake Nakuru and Lake Simbi, Kenya). Arch Protistenkd 133(1–2):81–91

    Google Scholar 

  • Ganguly D, Patra S, Muduli PR, Vardhan KV, Abhilash K, Robin R, Subramanian B (2015) Influence of nutrient input on the trophic state of a tropical brackish water lagoon. J Earth Syst Sci 124(5):1005–1017

    CAS  Google Scholar 

  • Gao F, Warren A, Zhang Q, Gong J, Miao M, Sun P, Xu D, Huang J, Yi Z, Song W (2016) The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Sci Rep 6:24874

    Google Scholar 

  • Giordano M, Davis JS, Bowes G (1994) Organic carbon release by Dunaliella Salina (Chlorophyta) under different growth conditions of CO2, nitrogen, and salinity 1. J Phycol 30(2):249–257

    CAS  Google Scholar 

  • Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis. John Wiley & Sons, New York, p 600

    Google Scholar 

  • Hu X (2014) Ciliates in extreme environments. J Eukaryot Microbiol 61(4):410–418

    CAS  Google Scholar 

  • Jackson ST, Blois JL (2015) Community ecology in a changing environment: perspectives from the Quaternary. Proc Natl Acad Sci 112(16):4915–4921

    CAS  Google Scholar 

  • Jiang Y, Xu H, Hu X, Zhu M, Al-Rasheid KA, Warren A (2011) An approach to analyzing spatial patterns of planktonic ciliate communities for monitoring water quality in Jiaozhou Bay, northern China. Mar Pollut Bull 62(2):227–235

    CAS  Google Scholar 

  • Jiang Y, Zhang W, Zhu M, Al-Rasheid KA, Xu H (2012) Are non-loricate ciliates a primary contributor to ecological pattern of planktonic ciliate communities? A case study in Jiaozhou Bay, northern China. J Mar Biol Assoc U K 92(6):1301–1308

    Google Scholar 

  • Jiang Y, Xu H, Hu X, Warren A, Song W (2013) Functional groups of marine ciliated protozoa and their relationships to water quality. Environ Sci Pollut Res 20:5272–5280

    CAS  Google Scholar 

  • Johansson M, Gorokhova E, Larsson U (2004) Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. J Plankton Res 26(1):67–80

    Google Scholar 

  • Jyothibabu R, Madhu N, Jayalakshmi K, Balachandran K, Shiyas C, Martin G, Nair K (2006) Impact of freshwater influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters–India). Estuar Coast Shelf Sci 69(3–4):505–518

    Google Scholar 

  • Kahan D (1969) The fauna of hot springs: With 1 table in the text. Internationale Vereinigung für theoretische und angewandte Limnologie. Verhandlungen 17(2):811–816

  • Kahan D (1972) Cyclidium citrullus Cohn, a ciliate from the hot springs of Tiberias (Israel). J Protozool 19(4):593–597

  • Kanuri VV, Muduli PR, Robin R, Kumar BC, Lovaraju A, Ganguly D, Patra S, Rao GN, Raman A, Subramanian B (2013) Plankton metabolic processes and its significance on dissolved organic carbon pool in a tropical brackish water lagoon. Cont Shelf Res 61:52–61

    Google Scholar 

  • Kchaou N, Elloumi J, Drira Z, Hamza A, Ayadi H, Bouain A, Aleya L (2009) Distribution of ciliates in relation to environmental factors along the coastline of the Gulf of Gabes, Tunisia. Estuar Coast Shelf Sci 83(4):414–424

    CAS  Google Scholar 

  • Kofoid C, Campbell A (1929) A conspectus of the marine and fresh-water Ciliata belonging to the suborder Tintinnoinea, with description of the suborder Tintinnoinea, with description of new species principally from Agassiz expedition to the eastern tropical Pacific, 1904–1905. Univ Calif Publ Zool 34:1–403

    Google Scholar 

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence–absence data. J Anim Ecol 72(3):367–382

    Google Scholar 

  • Landry MR, Calbet A (2004) Microzooplankton production in the oceans. ICES J Mar Sci 61(4):501–507

    Google Scholar 

  • Lei Y, Xu K, Choi JK, Hong HP, Wickham SA (2009) Community structure and seasonal dynamics of planktonic ciliates along salinity gradients. Eur J Protistol 45(4):305–319

    Google Scholar 

  • Liu H, Chen M, Shen P, Huang H, Dai M, Qi Z (2016) A first description of ciliate assemblages in a subtropical, eutrophic bay, South China Sea: species assemblage and environmental correlates-ciliate variation in a subtropical bay. Aquat Living Resour 29(3):304

    Google Scholar 

  • Lynn D (2008) The ciliated protozoa: characterization, classification, and guide to the literature. Springer Science and Business Media, New York, pp 1–605

  • Mieczan T (2008) Diversity and vertical distribution of planktonic ciliates in a stratified mesotrophic lake: relationship to environmental conditions. Oceanol Hydrobiol Stud 37(1):83–95

    Google Scholar 

  • Modassir Y, Ansari A (2011) Plankton community of the hypersaline salterns of Goa, India. In Biol Forum 3:78–81

  • Modenutti BE, Balseiro EG, Queimalinos CP (2000) Ciliate community structure in two South Andean lakes: the effect of lake water on Ophrydium naumanni distribution. Aquat Microb Ecol 21(3):299–307

    Google Scholar 

  • Muduli PR, Kanuri VV, Robin R, Kumar BC, Patra S, Raman A, Rao GN, Subramanian B (2013) Distribution of dissolved inorganic carbon and net ecosystem production in a tropical brackish water lagoon, India. Cont Shelf Res 64:75–87

    Google Scholar 

  • Muñoz-Barbosa A, Gaxiola-Castro G, Segovia-Zavala J (1991) Temporal variability of primary productivity, chlorophyll and seston in Bahía de los Ángeles, Gulf of California. Cienc Mar 17(4):47–68

    Google Scholar 

  • Nche-Fambo FA, Tirok K, Scharler UM (2016) Hypersaline conditions cause distinct ciliate community structure in a South African estuarine lake system. J Plankton Res 38(4):878–887

    Google Scholar 

  • Noland LE, Gojdics M (1967) Ecology of free-living protozoa. Res Protozool 2:215–266

    Google Scholar 

  • Padma S, Periakali P (1999) Physico-chemical and geochemical studies in Pulicat lake, east coast of India. Indian J Mar Sci 28:434–439

    Google Scholar 

  • Pandey BD, Yeragi SG, Reddy AK, Hadiwara A (2008) Life strategies and aquacultural usabilities of a hypersaline ciliate, Fabrea salina. Curr Sci 97(3):307–309

    Google Scholar 

  • Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marrasé C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32(2):143–155

    Google Scholar 

  • Pérez-Ruzafa A, De Pascalis F, Ghezzo M, Quispe-Becerra JI, Hernández-García R, Muñoz I, Vergara C, Pérez-Ruzafa IM, Umgiesser G, Marcos C (2019) Connectivity between coastal lagoons and sea: asymmetrical effects on assemblages’ and populations’ structure. Estuar Coast Shelf Sci 216:171–186

    Google Scholar 

  • Pineda A, Peláez Ó, Dias JD, Segovia BT, Bonecker CC, Machado Velho LF, Rodrigues LC (2019) The El Niño Southern Oscillation (ENSO) is the main source of variation for the gamma diversity of plankton communities in subtropical shallow lakes. Aquat Sci 81:49–15. https://doi.org/10.1007/s00027-019-0646-z

    Article  CAS  Google Scholar 

  • Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34(6):1097–1103

    Google Scholar 

  • Queimaliños CP, Modenutti BE, Balseiro EG (1999) Symbiotic association of the ciliate Ophrydium naumanni with Chlorella causing a deep chlorophyll a maximum in an oligotrophic South Andes lake. J Plankton Res 21(1):167–178

    Google Scholar 

  • Radhakrishnan S (1976) Some aspects of the distribution and seasonal abundance of macrophytic flora in the brackish lake Pulicat, India. Aquatic weeds in south-east Asia. W. Junk, The Hague, pp 107–117

  • Rakhesh M, Madhavirani KSVKS, Kumar BC, Raman AV, Kalavati C, Rao YP, Subramanian BR (2015) Trophic–salinity gradients and environmental redundancy resolve mesozooplankton dynamics in a large tropical coastal lagoon. Reg Stud Mar Sci 1:72–84

    Google Scholar 

  • Sahu BK, Srichandan S, Panigrahy R (2016) A preliminary study on the microzooplankton of Chilika Lake, a brackish water lagoon on the east coast of India. Environ Monit Assess 188(1):69. https://doi.org/10.1007/s10661-015-5062-9

    Article  CAS  Google Scholar 

  • Sanders RW, Wickham SA (1993) Planktonic protozoa and metazoa: predation, food quality and population control. Mar Microbial Food Webs 7(2):197–223

    Google Scholar 

  • Santoferrara LF, Alder VA (2009) Morphological variability, spatial distribution and abundance of Helicostomella species (Ciliophora: Tintinnina) in relation to environmental factors (Argentine shelf; 40-55 S). Sci Mar 73(4):701–716

    Google Scholar 

  • Schmoker C, Hernández-León S, Calbet A (2013) Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J Plankton Res 35(4):691–706

    Google Scholar 

  • Shadrin N, Anufriieva E (2018) Ecosystems of hypersaline waters: structure and trophic relations. Zh Obshch Biol 79(6):418–427

    Google Scholar 

  • Sikder MNA, Al MA, Xu G, Hu G, Xu H (2019) Spatial variations in trophic-functional patterns of periphytic ciliates and indications to water quality in coastal waters of the Yellow Sea. Environ Sci Pollut Res 26(3):2592–2602

    CAS  Google Scholar 

  • Sima S, Ahmadalipour A, Tajrishy M (2013) Map** surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Remote Sens Environ 136:374–385

    Google Scholar 

  • Sivasankar R, Ezhilarasan P, Kumar PS, Naidu S, Rao G, Kanuri VV, Rao VR, Ramu K (2018) Loricate ciliates as an indicator of eutrophication status in the estuarine and coastal waters. Mar Pollut Bull 129(1):207–211

    CAS  Google Scholar 

  • Strickland JD, Parsons TR (1972) A practical handbook of seawater analysis. 2nd ed. Bull Fish Res Bd Can 167:1–310

    Google Scholar 

  • Ter Braak CJ (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5):1167–1179

  • Ter Braak CJF, Smilauer P (2002) CANOCO Reference manual and CanoDraw for Windows User’s guide: Software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

  • Ter Braak CJ, Verdonschot FM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57(3):255–289

    Google Scholar 

  • Unesco TD (1978) Intergovernmental conference on environmental education. Final report. UNESCO ED/MD/49, Paris

    Google Scholar 

  • Urrutxurt I, Orive E, de la Sota A (2003) Seasonal dynamics of ciliated protozoa and their potential food in an eutrophic estuary (Bay of Biscay). Estuar Coast Shelf Sci 57:1169–1182

    Google Scholar 

  • Utermöhl H (1958) Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Verh Int Ver Theor Angew Limnol Mitt 9(1):1–38

    Google Scholar 

  • Vadrucci M, Cabrini M, Basset A (2007) Biovolume determination of phytoplankton guilds in transitional water ecosystems of Mediterranean Ecoregion. Transit Waters Bull 1(2):83–102

    Google Scholar 

  • Venice System (1959) Final resolution. The Venice System for the classification of marine waters according to salinity. 8-14 April 1958 Venice, Italy. In: Ancona, D. (Ed.), Symposium on the classification of brackish waters. Archives oceanography and limnology 11: 243–248

  • Verity PG, Langdon C (1984) Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J Plankton Res 6:859–868

    CAS  Google Scholar 

  • Wang Q, Xu H (2015) Colonization dynamics in the tropical-functional patterns of biofilm-dwelling ciliates using two methods in coastal waters. J Mar Biol Assoc UK 95:681–689

    CAS  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30(3):279–338

    Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21(2–3):213–251

    Google Scholar 

  • Wilson MV, Shmida A (1984) Measuring beta diversity with presence-absence data. J Ecol 72(3):1055–1064

  • Wu F, Huang J, Dai M, Liu H, Huang H (2016) Using ciliates to monitor different aquatic environments in Daya Bay, South China Sea. Can J Zool 94(4):265–273

    CAS  Google Scholar 

  • Xu H, Jiang Y, Al-Rasheid KA, Al-Farraj SA, Song W (2011) Application of an indicator based on taxonomic relatedness of ciliated protozoan assemblages for marine environmental assessment. Environ Sci Pollut Res 18(7):1213–1221

    CAS  Google Scholar 

  • Zhang W, Xu H, Jiang Y, Zhu M, Al-Reshaid KAS (2012) Colonization dynamics in trophic-functional structure of periphytic protist communities in coastal waters. Mar Biol 159:735–748

    Google Scholar 

Download references

Acknowledgments

The authors thank the Secretary, Ministry of Earth Sciences (MoES), Government of India; and Director, National Centre for Coastal Research (NCCR), MoES, Government of India, for the financial support and facilities during the study period. This study is a part of the MoES-NCCR comprehensive project on “Ecosystem Based Services of Pulicat Lake.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charan Kumar Basuri.

Additional information

Responsible Editor: Vedula VSS Sarma

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 221 kb)

Plate 1

Photographs of ciliate species identified in Pulicat Lake (PNG 799 kb)

High Resolution Image (TIF 4.23 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basuri, C.K., Pazhaniyappan, E., Munnooru, K. et al. Composition and distribution of planktonic ciliates with indications to water quality in a shallow hypersaline lagoon (Pulicat Lake, India). Environ Sci Pollut Res 27, 18303–18316 (2020). https://doi.org/10.1007/s11356-020-08177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08177-6

Keywords

Navigation