Log in

Two-Level Biomimetic Designs Enable Intelligent Stress Dispersion for Super-Foldable C/NiS Nanofiber Free-Standing Electrode

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Due to the lack of in-depth understanding about the folding issues of the electronic materials, it is a huge challenge to prepare a super-foldable and highly electrochemical faradic electrode. Here, inspired from from the fully nimble structures of cuit cocoons and cockscomb petals, with two-level biomimetic design, for the first time we prepared a super-foldable and electrochemically functional freestanding cathode, made of C-fiber@NiS-cockscomb (SFCNi). In virtue of its nimble biomimetic structures, SFCNi can remarkably sustain over 100,000 times, repeated true-folding without composite fibers fracture, functional matters detachment, conductivity degradation, or electrochemical performance change. The main mechanism behind these behaviors was disclosed by Real-time scanning electron microscopy and mechanical simulations, on the folding process. Results unveil that the cockscomb-like NiS with atomic thickness can deform freely due to the need of bending, and the cuit-cocoon-like SFCNi can generate an “ε-shape” folding structure at the crease. Such a smart self-adaptive deformation capability can effectively reduce the effect of stresses and local excessive deformations, so that the chemical bonds can preserve their interaction, and the material won’t fracture. This subtle and exceptional mechanical behavior realizes a super-foldable property. The two-level biomimetic design strategy is a novel method for fabrication of super-foldable composite electrodes and integrated multi-functional super-foldable devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References:

  1. Gao W, Ota H, Kiriya D, Takei K, Javey A. Flexible electronics toward wearable sensing. Accounts Chem Res 2019;52:523.

    Article  CAS  Google Scholar 

  2. Zhou Z, Chen K, Li X, Zhang S, Wu Y, Zhou Y, Meng K, Sun C, He Q, Fan W, Fan E, Lin Z, Tan X, Deng W, Yang J, Chen J. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron 2020;3:571.

    Article  Google Scholar 

  3. Yang Q, Wei T, Yin RT, Wu M, Xu Y, Koo J, Choi YS, **e Z, Chen SW, Kandela I, Yao S, Deng Y, Avila R, Liu T, Bai W, Yang Y, Han M, Zhang Q, Haney CR, Lee KB, Aras K, Wang T, Seo M, Luan H, Lee SM, Brikha A, Ghoreishi-Haack N, Tran L, Stepien I, Aird F, Waters EA, Yu X, Banks A, Trachiotis GD, Torkelson JM, Huang Y, Kozorovitskiy Y, Efimov IR, Rogers JA. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat Mater 2021;20:1559.

    Article  CAS  Google Scholar 

  4. Wang S, Xu J, Wang W, Wang GN, Rastak R, Molina-Lopez F, Chung JW, Niu S, Feig VR, Lopez J, Lei T, Kwon S, Kim Y, Foudeh AM, Ehrlich A, Gasperini A, Yun Y, Murmann B, Tok JBH, Bao Z. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018;555:83.

    Article  CAS  Google Scholar 

  5. Pomerantseva E, Bonaccorso F, Feng X, Cui Y, Gogotsi Y. Energy storage: the future enabled by nanomaterials. Science 2019;366:969.

    Article  Google Scholar 

  6. Park S, Heo SW, Lee W, Inoue D, Jiang Z, Yu K, **no H, Hashizume D, Sekino M, Yokota T, Fukuda K, Tajima K, Someya T. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 2018;561:516.

    Article  CAS  Google Scholar 

  7. Wang L, Zhang F, Liu Y, Leng J. Shape memory polymer fibers: materials, structures, and applications. Adv Fiber Mater 2021;4:5.

    Article  Google Scholar 

  8. Wang G, Zhu M. Reversible fusion and fission of graphene oxide-based fibers. Adv Fiber Mater 2021;3:381.

    Article  CAS  Google Scholar 

  9. Fu Z, Wang N, Legut D, Si C, Zhang Q, Du S, Germann TC, Francisco JS, Zhang R. Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem Rev 2019;119:11980.

    Article  CAS  Google Scholar 

  10. Keum K, Kim JW, Hong SY, Son JG, Lee S, Ha JS. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv Mater 2020;32:2002180.

    Article  CAS  Google Scholar 

  11. Wu Z, Wang Y, Liu X, Lv C, Li Y, Wei D, Liu Z. Carbon-nanomaterial-based flexible batteries for wearable electronics. Adv Mater 2019;31:1800716.

    Article  Google Scholar 

  12. Wen L, Li F, Cheng H. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater 2016;28:4306.

    Article  CAS  Google Scholar 

  13. Zhang J, Kong N, Uzun S, Levitt A, Seyedin S, Lynch PA, Qin S, Han M, Yang W, Liu J, Wang X, Gogotsi Y, Razal JM. Scalable manufacturing of free-standing, strong Ti3C2TX MXene films with outstanding conductivity. Adv Mater 2020;32:2001093.

    Article  CAS  Google Scholar 

  14. Chai S, Zan G, Dong K, Wu T, Wu Q. Approaching superfoldable thickness-limit carbon nanofiber membranes transformed from water-soluble PVA. Nano Lett 2021;21:8831.

    Article  CAS  Google Scholar 

  15. Zan G, Wu T, Zhu F, He P, Cheng Y, Chai S, Wang Y, Huang X, Zhang W, Wan Y, Peng X, Wu Q. A biomimetic conductive super-foldable material. Matter 2021;4:3232.

    Article  CAS  Google Scholar 

  16. Zan G, Wu T, Zhang Z, Li J, Zhou J, Zhu F, Chen H, Wen M, Yang X, Peng X, Chen J, Wu Q. Bioinspired nanocomposites with self-adaptive stress dispersion for super-foldable electrodes. Adv Sci 2022;9:2103714.

    Article  CAS  Google Scholar 

  17. Iijima S, Brabec C, Maiti A, Bernholc J. Structural flexibility of carbon nanotubes. J Chem Phys 1996;104:2089.

    Article  CAS  Google Scholar 

  18. Chen H, Zhang X, Zhang Y, Wang D, Bao D, Que Y, **ao W, Du S, Ouyang M, Pantelides ST. Atomically precise, custom-design origami graphene nanostructures. Science 2019;365:1036.

    Article  CAS  Google Scholar 

  19. Schniepp HC, Kudin KN, Li J, Prud’Homme RK, Car R, Saville DA, Aksay IA. Bending properties of single functionalized graphene sheets probed by atomic force microscopy. ACS Nano 2008;2:2577.

    Article  CAS  Google Scholar 

  20. Huang R, Huang M, Li X, An F, Koratkar N, Yu ZZ. Porous graphene films with unprecedented elastomeric scaffold-like folding behavior for foldable energy storage devices. Adv Mater 2018;30:1707025.

    Article  Google Scholar 

  21. Yang Y, Ng S, Chen D, Chang J, Wang D, Shang J, Huang Q, Deng Y, Zheng Z. Freestanding lamellar porous carbon stacks for low-temperature-foldable supercapacitors. Small 2019;15:1902071.

    Article  CAS  Google Scholar 

  22. Sun Y, Sills RB, Hu X, Seh ZW, **ao X, Xui H, Luo W, ** H, **n Y, Li T, Zhang Z, Zhou J, Cai W, Huang Y, Cui Y. A bamboo-inspired nanostructure design for flexible, foldable, and twistable energy storage devices. Nano Lett 2015;15:3899.

    Article  CAS  Google Scholar 

  23. Li J, Shao Y, Shi Q, Hou C, Zhang Q, Li Y, Kaner RB, Wang H. Calligraphy-inspired brush written foldable supercapacitors. Nano Energy 2017;38:429.

    Article  Google Scholar 

  24. Liu X, Zou S, Liu K, Lv C, Wu Z, Yin Y, Liang T, **e Z. Highly compressible three-dimensional graphene hydrogel for foldable all-solid-state supercapacitor. J Power Sources 2018;384:214.

    Article  CAS  Google Scholar 

  25. Chen R, Hu Y, Shen Z, Pan P, He X, Wu K, Zhang X, Cheng Z. Facile fabrication of foldable electrospun polyacrylonitrile-based carbon nanofibers for flexible lithium-ion batteries. J Mater Chem A 2017;5:12914.

    Article  CAS  Google Scholar 

  26. **ao P, Bu F, Yang G, Zhang Y, Xu Y. Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium–sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices. Adv Mater 2017;29:1703324.

    Article  Google Scholar 

  27. Chen C, Cao J, Lu Q, Wang X, Song L, Niu Z, Chen J. Foldable all-solid-state supercapacitors integrated with photodetectors. Adv Funct Mater 2017;27:1604639.

    Article  Google Scholar 

  28. Liu T, Zhang M, Wang YL, Wang QY, Lv C, Liu KX, Suresh S, Yin YH, Hu YY, Li YS, Liu XB, Zhong SW, **a BY, Wu ZP. Engineering the surface/interface of horizontally oriented carbon nanotube macrofilm for foldable lithium-ion battery withstanding variable weather. Adv Energy Mater 2018;8:1802349.

    Article  Google Scholar 

  29. Li L, Wu ZP, Sun H, Chen D, Gao J, Suresh S, Chow P, Singh CV, Koratkar N. A foldable lithium–sulfur battery. ACS Nano 2015;9:11342.

    Article  CAS  Google Scholar 

  30. Mao Y, Li G, Guo Y, Li Z, Liang C, Peng X, Lin Z. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nat Commun 2017;8:14628.

    Article  Google Scholar 

  31. Qin Q, Liu J, Mao W, Xu C, Lan B, Wang Y, Zhang Y, Yan J, Wu Y. Ni(OH)2/CNTs hierarchical spheres for a foldable all-solid-state supercapacitor with high specific energy. Nanoscale 2018;10:7377.

    Article  CAS  Google Scholar 

  32. He X, Hu Y, Chen R, Shen Z, Wu K, Cheng Z, Pan P. Foldable uniform GeOx/ZnO/C composite nanofibers as a high-capacity anode material for flexible lithium ion batteries. Chem Eng J 2019;360:1020.

    Article  CAS  Google Scholar 

  33. Miao Y, Yan J, Huang Y, Fan W, Liu T. Electrospun polymer nanofiber membrane electrodes and an electrolyte for highly flexible and foldable all-solid-state supercapacitors. RSC Adv 2015;5:26189.

    Article  CAS  Google Scholar 

  34. Yun J, Lim Y, Lee H, Lee G, Park H, Hong SY, ** SW, Lee YH, Lee S, Ha JS. A patterned graphene/ZnO uv sensor driven by integrated asymmetric micro-supercapacitors on a liquid metal patterned foldable paper. Adv Funct Mater 2017;27:1700135.

    Article  Google Scholar 

  35. Ge D, Yang L, Fan L, Zhang C, **ao X, Gogotsi Y, Yang S. Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 2015;11:568.

    Article  CAS  Google Scholar 

  36. Liu L, Niu Z, Zhang L, Zhou W, Chen X, **e S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv Mater 2014;26:4855.

    Article  CAS  Google Scholar 

  37. Liu Q, Li L, Xu J, Chang Z, Xu D, Yin Y, Yang X, Liu T, Jiang Y, Yan J, Zhang X. Flexible and foldable Li–O2 battery based on paper-ink cathode. Adv Mater 2015;27:8095.

    Article  CAS  Google Scholar 

  38. Wu H, Kong D, Ruan Z, Hsu P, Wang S, Yu Z, Carney TJ, Hu L, Fan S, Cui Y. A transparent electrode based on a metal nanotrough network. Nat Nanotech 2013;8:421.

    Article  CAS  Google Scholar 

  39. Gustafsson G, Cao Y, Treacy GM, Klavetter F, Colaneri N, Heeger AJ. Flexible light-emitting-diodes made from soluble conducting polymers. Nature 1992;357:477.

    Article  CAS  Google Scholar 

  40. Zan G, Wu Q. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv Mater 2016;28:2099.

    Article  CAS  Google Scholar 

  41. Gao H, Wang Z, Cui C, Bao J, Zhu Y, **a J, Wen S, Wu H, Yu S. A highly compressible and stretchable carbon spring for smart vibration and magnetism sensors. Adv Mater 2021;33:2102724.

    Article  CAS  Google Scholar 

  42. Hao Y, Hu F, Chen Y, Wang Y, Xue J, Yang S, Peng S. Recent progress of electrospun nanofibers for zinc-air batteries. Adv Fiber Mater 2021. https://doi.org/10.1007/s42765-021-00109-4 .

    Article  Google Scholar 

  43. Lee JKY, Chen N, Peng S, Li L, Tian L, Thakor N, Ramakrishna S. Polymer-based composites by electrospinning: preparation and functionalization with nanocarbons. Prog Polym Sci 2018;86:40.

    Article  CAS  Google Scholar 

  44. Zhang Y, Zuo L, Zhang L, Yan J, Lu H, Fan W, Liu T. Immobilization of NiS nanoparticles on n-doped carbon fiber aerogels as advanced electrode materials for supercapacitors. Nano Res 2016;9:2747.

    Article  CAS  Google Scholar 

  45. Xue Z, Li X, Liu Q, Cai M, Liu K, Liu M, Ke Z, Liu X, Li G. Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution. Adv Mater 2019;31:1900430.

    Article  Google Scholar 

  46. Yu X, Yu L, Wu HB, Lou XWD. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem Int Edit 2015;54:5331.

    Article  CAS  Google Scholar 

  47. Yang J, Wang Y, Li W, Wang L, Fan Y, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu HK, Dou SX, Zhao D. Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv Mater 2017;29:1700523.

    Article  Google Scholar 

  48. He S, Li Y, Liu L, Jiang Y, Feng J, Zhu W, Zhang J, Dong Z, Deng Y, Luo J, Zhang W, Chen G. Semiconductor glass with superior flexibility and high room temperature thermoelectric performance. Sci Adv 2020;6:eaaz8423.

    Article  CAS  Google Scholar 

  49. Deng S, Yuan Z, Tie Z, Wang C, Song L, Niu Z. Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew Chem Int Edit 2020;59:22002.

    Article  CAS  Google Scholar 

  50. Huang C, Gao A, Yi F, Wang Y, Shu D, Liang Y, Zhu Z, Ling J, Hao J. Metal organic framework derived hollow NiS@C with S-vacancies to boost high-performance supercapacitors. Chem Eng J 2021;419:129643.

    Article  CAS  Google Scholar 

  51. Pan Q, Zhou H, Lu Q, Gao H, Lu L. History-independent cyclic response of nanotwinned metals. Nature 2017;551:214.

    Article  CAS  Google Scholar 

  52. Zan G, Wu T, Hu P, Zhou Y, Zhao S, Xu S, Chen J, Cui Y, Wu Q. An approaching-theoretical-capacity anode material for aqueous battery: hollow hexagonal prism Bi2O3 assembled by nanoparticles. Energy Storage Mater 2020;28:82.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support of the National Natural Science Foundation of China (No. 22176145, 51771138), the Fundamental Research Funds for the Central Universities (22120210137), and the State Key Laboratory of Fine Chemicals, Dalian University of Technology (KF 2001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong Wu or Qingsheng Wu.

Ethics declarations

Conflict of interest

The authors have no interests to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (MP4 4,701 KB)

Supplementary file 2 (MP4 6,115 KB)

Supplementary file 3 (DOCX 6,554 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zan, G., Wu, T., Dong, W. et al. Two-Level Biomimetic Designs Enable Intelligent Stress Dispersion for Super-Foldable C/NiS Nanofiber Free-Standing Electrode. Adv. Fiber Mater. 4, 1177–1190 (2022). https://doi.org/10.1007/s42765-022-00162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00162-7

Keywords

Navigation