Log in

Recent Progress of Electrospun Nanofibers for Zinc–Air Batteries

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

As a potential electrochemical energy storage device, zinc–air batteries (ZABs) received considerable interest in the field of energy conversion and storage due to its high energy density and eco-friendliness. Nevertheless, the sluggish kinetics of the oxygen reduction and oxygen evolution reactions limit the commercial development of ZABs, so it is of great significance to develop efficient, low-cost and non-noble metal bifunctional catalysts. Electrospun one-dimensional nanofibers with unique properties such as high porosity and large surface area have great advantages on possessing more active sites, shortening the diffusion pathways for ions/electrons, and improving the kinetics via intercalation/de-intercalation processes, which endow them with promising application in the field of energy storage devices, especially ZABs. This review firstly introduces the electrospinning technique. Then, the oxygen reduction/evolution reaction triggered by electrospun nanofibers with self-supported structures are presented, followed by the application of electrospun nanofibers for liquid and flexible solid-state ZABs. Finally, the remaining challenges and research directions of ZABs based on electrospun nanofibers electrocatalysts are briefly discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li BQ, Zhao CX, Chen S, Liu JN, Chen X, Song L, Zhang Q. Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn–air batteries. Adv Mater. 2019;31:1900592.

    Article  Google Scholar 

  2. Pan Y, Liu S, Sun K, Chen X, Wang B, Wu K, Cao X, Cheong WC, Shen R, Han A, Chen Z, Zheng L, Luo J, Lin Y, Liu Y, Wang D, Peng Q, Zhang Q, Chen C, Li Y. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe–N4 catalytic site: a superior trifunctional catalyst for overall water splitting and Zn–air batteries. Angew Chem Int Ed. 2018;57:8614.

    Article  CAS  Google Scholar 

  3. Qiao Y, Yuan P, Hu Y, Zhang J, Mu S, Zhou J, Li H, **a H, He J, Xu Q. Sulfuration of an Fe–N–C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn–air batteries. Adv Mater. 2018;30:1804504.

    Article  Google Scholar 

  4. Li B-Q, Zhang S-Y, Wang B, **a Z-J, Tang C, Zhang Q. A porphyrin covalent organic framework cathode for flexible Zn–air batteries. Energy Environ Sci. 2018;11:1723.

    Article  CAS  Google Scholar 

  5. Guan C, Sumboja A, Wu H, Ren W, Liu X, Zhang H, Liu Z, Cheng C, Pennycook SJ, Wang J. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc–air batteries. Adv Mater. 2017;29:1704117.

    Article  Google Scholar 

  6. Jiang H, Gu J, Zheng X, Liu M, Qiu X, Wang L, Li W, Chen Z, Ji X, Li J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ Sci. 2019;12:322.

    Article  CAS  Google Scholar 

  7. Wu M, Zhang G, Qiao J, Chen N, Chen W, Sun S. Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy. 2019;61:86.

    Article  CAS  Google Scholar 

  8. Zou H, Li G, Duan L, Kou Z, Wang J. In situ coupled amorphous cobalt nitride with nitrogen-doped graphene aerogel as a trifunctional electrocatalyst towards Zn–air battery deriven full water splitting. Appl Catal B Environ. 2019;259:118100.

    Article  CAS  Google Scholar 

  9. Zhong X, Yi W, Qu Y, Zhang L, Bai H, Zhu Y, Wan J, Chen S, Yang M, Huang L, Gu M, Pan H, Xu B. Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Appl Catal B Environ. 2020;260:118188.

    Article  CAS  Google Scholar 

  10. Sun H, Li Q, Lian Y, Zhang C, Qi P, Mu Q, ** H, Zhang B, Chen M, Deng Z, Peng Y. Highly efficient water splitting driven by zinc-air batteries with a single catalyst incorporating rich active species. Appl Catal B Environ. 2020;263:118139.

    Article  CAS  Google Scholar 

  11. Li Z, Lv L, Ao X, Li J-G, Sun H, An P, Xue X, Li Y, Liu M, Wang C, Liu M. An effective method for enhancing oxygen evolution kinetics of LaMO3 (M = Ni Co, Mn) perovskite catalysts and its application to a rechargeable zinc–air battery. Appl Catal B Environ. 2020;262:118291.

    Article  CAS  Google Scholar 

  12. ** Q, Ren B, Chen J, Cui H, Wang C. A facile method to conduct 3D self-supporting Co–FeCo/N-doped graphenelike carbon bifunctional electrocatalysts for flexible solid-state zinc air. Appl Catal B Environ. 2019;259:117887.

    Article  Google Scholar 

  13. Feng Q, Zhao Z, Yuan X-Z, Li H, Wang H. Oxygen vacancy engineering of yttrium ruthenate pyrochlores as an efficient oxygen catalyst for both proton exchange membrane water electrolyzers and rechargeable zinc-air batteries. Appl Catal B Environ. 2020;260:118176.

    Article  CAS  Google Scholar 

  14. Ma L, Chen S, Pei Z, Huang Y, Liang G, Mo F, Yang Q, Su J, Gao Y, Zapien JA, Zhi C. Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc–air battery. ACS Nano. 1949;2018:12.

    Google Scholar 

  15. Bôas NV, Junior JBS, Varanda LC, Machado SAS, Calegaro ML. Bismuth and cerium doped cryptomelane-type manganese dioxide nanorods as bifunctional catalysts for rechargeable alkaline metal–air batteries. Appl Catal B Environ. 2019;258:118014.

    Article  Google Scholar 

  16. Guan C, Sumboja A, Zang W, Qian Y, Zhang H, Liu X, Liu Z, Zhao D, Pennycook SJ, Wang J. Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Storage Mater. 2019;16:243.

    Article  Google Scholar 

  17. Ji D, Fan L, Tao L, Sun Y, Li M, Yang G, Tran TQ, Ramakrishna S, Guo S. The Kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc–air batteries. Angew Chem Int Ed. 2019;58:13840.

    Article  CAS  Google Scholar 

  18. Wang H, Yuan S, Ma D, Zhang X, Yan J. Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy Environ Sci. 2015;8:1660.

    Article  CAS  Google Scholar 

  19. Cao X, Deng J, Pan K. Electrospinning Janus type CoOx/C nanofibers as electrocatalysts for oxygen reduction reaction. Adv Fiber Mater. 2020;2:85.

    Article  CAS  Google Scholar 

  20. Hu G, Zhang X, Liu X, Yu J, Ding B. Strategies in precursors and post treatments to strengthen carbon nanofibers. Adv Fiber Mater. 2020;2:46.

    Article  CAS  Google Scholar 

  21. Inagaki M, Yang Y, Kang F. Carbon nanofibers prepared via electrospinning. Adv Mater. 2012;24:2547.

    Article  CAS  Google Scholar 

  22. Wang M, Ye C, Liu H, Xu M, Bao S. Nanosized metal phosphides embedded in nitrogen-doped porous carbon nanofibers for enhanced hydrogen evolution at all pH values. Angew Chem Int Ed. 2018;57:1963.

    Article  CAS  Google Scholar 

  23. Hu G, Zhang X, Liu X, Yu J, Ding B. Electrospun nanofibers withstandable to high-temperature reactions: synergistic effect of polymer relaxation and solvent removal. Adv Fiber Mater. 2021;3:14.

    Article  CAS  Google Scholar 

  24. Kunwar R, Harilal M, Krishnan SG, Pal B, Misnon II, Mariappan CR, Ezema FI, Elim HI, Yang C-C, Jose R. Pseudocapacitive charge storage in thin nanobelts. Adv Fiber Mater. 2019;1:205.

    Article  Google Scholar 

  25. Shi Q, Sun J, Hou C, Li Y, Zhang Q, Wang H. Advanced functional fiber and smart textile. Adv Fiber Mater. 2019;1:3.

    Article  Google Scholar 

  26. Sun Y, Mwandeje JB, Wangatia LM, Zabihi F, Nedeljković J, Yang S. Enhanced photocatalytic performance of surface-modified TiO2 nanofibers with rhodizonic acid. Adv Fiber Mater. 2020;2:118.

    Article  CAS  Google Scholar 

  27. Tebyetekerwa M, Xu Z, Yang S, Ramakrishna S. Electrospun nanofibers-based face masks. Adv Fiber Mater. 2020;2:161.

    Article  CAS  Google Scholar 

  28. Cavaliere S, Subianto S, Savych I, Jones DJ, Roziere J. Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci. 2011;4:4761.

    Article  CAS  Google Scholar 

  29. Yan C, Zhu P, Jia H, Zhu J, Selvan RK, Li Y, Dong X, Du Z, Angunawela I, Wu N, Dirican M, Zhang X. High-performance 3-D fiber network composite electrolyte enabled with li–ion conducting nanofibers and amorphous PEO-based cross-linked polymer for ambient all-solid-state lithium-metal batteries. Adv Fiber Mater. 2019;1:46.

    Article  Google Scholar 

  30. Su Y, Chen C, Pan H, Yang Y, Chen G, Zhao X, Li W, Gong Q, **e G, Zhou Y, Zhang S, Tai H, Jiang Y, Chen J. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv Funct Mater. 2021;31:2010962.

    Article  CAS  Google Scholar 

  31. Su Y, Li W, Yuan L, Chen C, Pan H, **e G, Conta G, Ferrier S, Zhao X, Chen G, Tai H, Jiang Y, Chen J. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy. 2021;89:106321.

    Article  CAS  Google Scholar 

  32. Zeng S, Chen H, Wang H, Tong X, Chen M, Di J, Li Q. Crosslinked carbon nanotube aerogel films decorated with cobalt oxides for flexible rechargeable Zn–air batteries. Small. 2017;13:1700518.

    Article  Google Scholar 

  33. Li L, Peng S, Lee JKY, Ji D, Srinivasan M, Ramakrishna S. Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy. 2017;39:111.

    Article  CAS  Google Scholar 

  34. Ji D, Fan L, Li L, Peng S, Yu D, Song J, Ramakrishna S, Guo S. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc–air batteries. Adv Mater. 2019;31:1808267.

    Article  Google Scholar 

  35. Li Y, Zhong C, Liu J, Zeng X, Qu S, Han X, Deng Y, Hu W, Lu J. Atomically thin mesoporous Co3O4 layers strongly coupled with N-rGO nanosheets as high-performance bifunctional catalysts for 1D knittable zinc–air batteries. Adv Mater. 2017;30:1703657.

    Article  Google Scholar 

  36. Thavasi V, Singh G, Ramakrishna S. Electrospun nanofibers in energy and environmental applications. Energy Environ Sci. 2008;1:205.

    Article  CAS  Google Scholar 

  37. Chakraborty S, Liao IC, Adler A, Leong KW. Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev. 2009;61:1043.

    Article  CAS  Google Scholar 

  38. Li Y, Dai H. Recent advances in zinc–air batteries. Chem Soc Rev. 2014;43:5257.

    Article  CAS  Google Scholar 

  39. Tang C, Wang B, Wang HF, Zhang Q. Defect engineering toward atomic Co–Nx–C in hierarchical graphene for rechargeable flexible solid Zn–air batteries. Adv Mater. 2017;29:1703185.

    Article  Google Scholar 

  40. Ji D, Sun J, Tian L, Chinnappan A, Zhang T, Jayathilaka WADM, Gosh R, Baskar C, Zhang Q, Ramakrishna S. Engineering of the heterointerface of porous carbon nanofiber-supported nickel and manganese oxide nanoparticle for highly efficient bifunctional oxygen catalysis. Adv Funct Mater. 2020;30:1910568.

    Article  CAS  Google Scholar 

  41. Pan Z, Chen H, Jie Yang YM, Zhang Q, Kou Z, Ding X, Pang Y, Zhang L, Gu Q, Yan C, Wang J. CuCo2S4 Nanosheets@N-doped carbon nanofibers by sulfurization at room temperature as bifunctional electrocatalysts in flexible quasi-solid-state Zn–air batteries. Adv Sci. 2019;6:1900628.

    Article  Google Scholar 

  42. Peng S, Han X, Li L, Chou S, Ji D, Huang H, Du Y, Liu J, Ramakrishna S. Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc–air batteries. Adv Energy Mater. 2018;8:1800612.

    Article  Google Scholar 

  43. Wu M, Wang Y, Wei Z, Wang L, Zhuo M, Zhang J, Han X, Ma J. Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air batteries. J Mater Chem A. 2018;6:10918.

    Article  CAS  Google Scholar 

  44. Chen H, Wang N, Di J, Zhao Y, Song Y, Jiang L. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning. Langmuir. 2010;26:11291.

    Article  CAS  Google Scholar 

  45. Zhang G, **a BY, **ao C, Yu L, Wang X, **e Y, Lou XW. General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew Chem Int Ed. 2013;52:8643.

    Article  CAS  Google Scholar 

  46. Li C, Wu M, Liu R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co–N–C nanofibers with embedding FeCo alloy nanoparticles. Appl Catal B Environ. 2019;244:150.

    Article  CAS  Google Scholar 

  47. Fu Y, Yu H-Y, Jiang C, Zhang T-H, Zhan R, Li X, Li J-F, Tian J-H, Yang R. NiCo alloy nanoparticles decorated on N-doped carbon nanofibers as highly active and durable oxygen electrocatalyst. Adv Funct Mater. 2018;28:1705094.

    Article  Google Scholar 

  48. Surendran S, Shanmugapriya S, Sivanantham A, Shanmugam S, Kalai SR. Electrospun carbon nanofibers encapsulated with NiCoP: a multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Adv Funct Mater. 2018;8:1800555.

    Article  Google Scholar 

  49. Yu A, Lee C, Lee NS, Kim MH, Lee Y. Highly efficient silver–cobalt composite nanotube electrocatalysts for favorable oxygen reduction reaction. ACS Appl Mater Interfaces. 2016;8:32833.

    Article  CAS  Google Scholar 

  50. Yu A, Lee C, Kim MH, Lee Y. Nanotubular iridium–cobalt mixed oxide crystalline architectures inherited from cobalt oxide for highly efficient oxygen evolution reaction catalysis. ACS Appl Mater Interfaces. 2017;9:35057.

    Article  CAS  Google Scholar 

  51. Lee Y-G, Ahn H-J. Tri(Fe/N/F)-doped mesoporous carbons as efficient electrocatalysts for the oxygen reduction reaction. Appl Surf Sci. 2019;487:389.

    Article  CAS  Google Scholar 

  52. Prabu M, Ketpang K, Shanmugam S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries. Nanoscale. 2014;6:3173.

    Article  CAS  Google Scholar 

  53. Wei P, Sun X, Liang Q, Li X, He Z, Hu X, Zhang J, Wang M, Li Q, Yang H, Han J, Huang Y. Enhanced oxygen evolution reaction activity by encapsulating NiFe alloy nanoparticles in nitrogen-doped carbon nanofibers. ACS Appl Mater Interfaces. 2020;12:31503.

    Article  CAS  Google Scholar 

  54. Bian J, Su R, Yao Y, Wang J, Zhou J, Li F, Wang ZL, Sun C. Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc–air batteries. ACS Appl Energy Mater. 2019;2:923.

    Article  CAS  Google Scholar 

  55. Mooste M, Kibena-Põldsepp E, Vassiljeva V, Kikas A, Käärik M, Kozlova J, Kisand V, Külaviir M, Cavaliere S, Leis J, Krumme A, Sammelselg V, Holdcroft S, Tammeveski K. Electrospun polyacrylonitrile-derived Co or Fe containing nanofibre catalysts for oxygen reduction reaction at the alkaline membrane fuel cell cathode. ChemCatChem. 2020;12:4568.

    Article  CAS  Google Scholar 

  56. Li M, Wang H, Zhu W, Li W, Wang C, Lu X. RuNi nanoparticles embedded in N-doped carbon nanofibers as a robust bifunctional catalyst for efficient overall water splitting. Adv Sci. 2020;7:1901833.

    Article  CAS  Google Scholar 

  57. Jiménez-Morales I, Haidar F, Cavaliere S, Jones D, Rozière J. Strong interaction between platinum nanoparticles and tantalum-doped tin oxide nanofibers and its activation and stabilization effects for oxygen reduction reaction. ACS Catal. 2020;10:10399.

    Article  Google Scholar 

  58. Li H, An M, Zhao Y, Pi S, Li C, Sun W, Wang H-G. Co nanoparticles encapsulated in N-doped carbon nanofibers as bifunctional catalysts for rechargeable Zn–air battery. Appl Surf Sci. 2019;478:560.

    Article  CAS  Google Scholar 

  59. Lee C-H, Park H-N, Lee Y-K, Chung YS, Lee S, Joh H-I. Palladium on yttrium-embedded carbon nanofibers as electrocatalyst for oxygen reduction reaction in acidic media. Electrochem Commun. 2019;106:106516.

    Article  CAS  Google Scholar 

  60. Zhao Y, Zhang J, Guo X, Fan H, Wu W, Liu H, Wang G. Fe3C@nitrogen doped CNT arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction. J Mater Chem A. 2017;5:19672.

    Article  CAS  Google Scholar 

  61. Wu X, Miao H, Hu R, Chen B, Yin M, Zhang H, **a L, Zhang C, Yuan J. A-site deficient perovskite nanofibers boost oxygen evolution reaction for zinc–air batteries. Appl Surf Sci. 2021;536:147806.

    Article  CAS  Google Scholar 

  62. Zhang C-L, Lu B-R, Cao F-H, Wu Z-Y, Zhang W, Cong H-P, Yu S-H. Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction. Nano Energy. 2019;55:226.

    Article  CAS  Google Scholar 

  63. Miao Y-E, Yan J, Ouyang Y, Lu H, Lai F, Wu Y, Liu T. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction. Appl Surf Sci. 2018;443:266.

    Article  CAS  Google Scholar 

  64. Qiu L, Han X, Lu Q, Zhao J, Wang Y, Chen Z, Zhong C, Hu W, Deng Y. Co3O4 nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Inorg Chem Front. 2019;6:3554.

    Article  CAS  Google Scholar 

  65. An X, Shin D, Jeong J, Lee J. Metal-derived mesoporous structure of a carbon nanofiber electrocatalyst for improved oxygen evolution reaction in alkaline water electrolysis. ChemElectroChem. 2016;3:1720.

    Article  CAS  Google Scholar 

  66. Deng D, Tian Y, Li H, Li H, Xu L, Qian J, Li H, Zhang Q. Electrospun Fe, N co-doped porous carbon nanofibers with Fe4N species as a highly efficient oxygen reduction catalyst for rechargeable zinc–air batteries. Appl Surf Sci. 2019;492:417.

    Article  CAS  Google Scholar 

  67. Hyun S, Ahilan V, Kim H, Shanmugam S. The influence of Co3V2O8 morphology on the oxygen evolution reaction activity and stability. Electrochem Commun. 2016;63:44.

    Article  CAS  Google Scholar 

  68. Ding Z, Cheng Q, Zou L, Fang J, Zou Z, Yang H. Controllable synthesis of titanium nitride nanotubes by coaxial electrospinning and their application as a durable support for oxygen reduction reaction electrocatalysts. Chem Commun. 2017;53:13233.

    Article  CAS  Google Scholar 

  69. Li Z, Li J-G, Ao X, Sun H, Wang H, Yuen M-F, Wang C. Conductive metal–organic frameworks endow high-efficient oxygen evolution of La0.6Sr0.4Co0.8Fe0.2O3 perovskite oxide nanofibers. Electrochim Acta. 2020;334:135638.

    Article  CAS  Google Scholar 

  70. Li B, Sasikala SP, Kim DH, Bak J, Kim I-D, Cho E, Kim SO. Fe–N4 complex embedded free-standing carbon fabric catalysts for higher performance ORR both in alkaline & acidic media. Nano Energy. 2019;56:524.

    Article  CAS  Google Scholar 

  71. Deng X, Yin S, Wu X, Sun M, **e Z, Huang Q. Synthesis of PtAu/TiO2 nanowires with carbon skin as highly active and highly stable electrocatalyst for oxygen reduction reaction. Electrochim Acta. 2018;283:987.

    Article  CAS  Google Scholar 

  72. Li T, Lv Y, Su J, Wang Y, Yang Q, Zhang Y, Zhou J, Xu L, Sun D, Tang Y. Anchoring CoFe2O4 nanoparticles on N-doped carbon nanofibers for high-performance oxygen evolution reaction. Adv Sci. 2017;4:1700226.

    Article  Google Scholar 

  73. Wang Y, Fu J, Zhang Y, Li M, Hassan FM, Li G, Chen Z. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc–air batteries. Nanoscale. 2017;9:15865.

    Article  CAS  Google Scholar 

  74. Liu C, Zuo P, ** Y, Zong X, Li D, **ong Y. Defect-enriched carbon nanofibers encapsulating NiCo oxide for efficient oxygen electrocatalysis and rechargeable Zn–air batteries. J Power Sources. 2020;473:228604.

    Article  CAS  Google Scholar 

  75. Wang X, Li Y, ** T, Meng J, Jiao L, Zhu M, Chen J. Electrospun thin-walled CuCo2O4@C nanotubes as bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Nano Lett. 2017;17:7989.

    Article  CAS  Google Scholar 

  76. Hassen D, Shenashen MA, El-Safty SA, Selim MM, Isago H, Elmarakbi A, El-Safty A, Yamaguchi H. Nitrogen-doped carbon-embedded TiO2 nanofibers as promising oxygen reduction reaction electrocatalysts. J Power Sources. 2016;330:292.

    Article  CAS  Google Scholar 

  77. Shi X, He B, Zhao L, Gong Y, Wang R, Wang H. FeS2–CoS2 incorporated into nitrogen-doped carbon nanofibers to boost oxygen electrocatalysis for durable rechargeable Zn–air batteries. J Power Sources. 2021;482:228955.

    Article  CAS  Google Scholar 

  78. Wei Z, Ren Y, Zhao H, Wang M, Tang H. Controllable preparation and synergistically improved catalytic performance of TiC/C hybrid nanofibers via electrospinning for the oxygen reduction reaction. Ceram Int. 2020;46:25313.

    Article  CAS  Google Scholar 

  79. Li T, Li S, Liu Q, Tian Y, Zhang Y, Fu G, Tang Y. Hollow Co3O4/CeO2 heterostructures in situ embedded in N-doped carbon nanofibers enable outstanding oxygen evolution. ACS Sustain Chem Eng. 2019;7:17950.

    Article  CAS  Google Scholar 

  80. Liu T, Cai S, Gao Z, Liu S, Li H, Chen L, Li M, Guo H. Facile synthesis of the porous FeCo@nitrogen-doped carbon nanosheets as bifunctional oxygen electrocatalysts. Electrochim Acta. 2020;335:135647.

    Article  CAS  Google Scholar 

  81. Bu Y, Gwon O, Nam G, Jang H, Kim S, Zhong Q, Cho J, Kim G. A highly efficient and robust cation ordered perovskite oxide as a bifunctional catalyst for rechargeable zinc–air batteries. ACS Nano. 2017;11:11594.

    Article  CAS  Google Scholar 

  82. Yoon KR, Choi J, Cho S-H, Jung J-W, Kim C, Cheong JY, Kim I-D. Facile preparation of efficient electrocatalysts for oxygen reduction reaction: one-dimensional meso/macroporous cobalt and nitrogen Co-doped carbon nanofibers. J Power Sources. 2018;380:174.

    Article  CAS  Google Scholar 

  83. **a H, Zhang S, Zhu X, **ng H, Xue Y, Huang B, Sun M, Li J, Wang E. Highly efficient catalysts for oxygen reduction using well-dispersed iron carbide nanoparticles embedded in multichannel hollow nanofibers. J Mater Chem A. 2020;8:18125.

    Article  CAS  Google Scholar 

  84. Zhang Z, Gao D, Xue D, Liu Y, Liu P, Zhang J, Qian J. Co and CeO2 co-decorated N-do** carbon nanofibers for rechargeable Zn–air batteries. Nanotechnology. 2019;30:395401.

    Article  CAS  Google Scholar 

  85. Wang M, Zhang C, Meng T, Pu Z, ** H, He D, Zhang J, Mu S. Iron oxide and phosphide encapsulated within N, P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc–air batteries. J Power Sources. 2019;413:367.

    Article  CAS  Google Scholar 

  86. Liu C, Wang J, Li J, Liu J, Wang C, Sun X, Shen J, Han W, Wang L. Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction. J Mater Chem A. 2017;5:1211.

    Article  CAS  Google Scholar 

  87. Chen X, Yan Z, Yu M, Sun H, Liu F, Zhang Q, Cheng F, Chen J. Spinel oxide nanoparticles embedded in nitrogen-doped carbon nanofibers as a robust and self-standing bifunctional oxygen cathode for Zn–air batteries. J Mater Chem A. 2019;7:24868.

    Article  CAS  Google Scholar 

  88. Sankar SS, Karthick K, Sangeetha K, Gill RS, Kundu S. Annexation of nickel vanadate (Ni3V2O8) nanocubes on nanofibers: an excellent electrocatalyst for water oxidation. ACS Sustain Chem Eng. 2020;8:4572.

    Article  CAS  Google Scholar 

  89. Wang Y, Li G, ** J, Yang S. Hollow porous carbon nanofibers as novel support for platinum-based oxygen reduction reaction electrocatalysts. Int J Hydrog Energy. 2017;42:5938.

    Article  CAS  Google Scholar 

  90. Kim SY, Yu A, Lee Y, Kim HY, Kim YJ, Lee NS, Lee C, Lee Y, Kim MH. Single phase of spinel Co2RhO4 nanotubes with remarkably enhanced catalytic performance for the oxygen evolution reaction. Nanoscale. 2019;11:9287.

    Article  CAS  Google Scholar 

  91. Niu Q, Guo J, Chen B, Nie J, Guo X, Ma G. Bimetal-organic frameworks/polymer core-shell nanofibers derived heteroatom-doped carbon materials as electrocatalysts for oxygen reduction reaction. Carbon. 2017;114:250.

    Article  CAS  Google Scholar 

  92. Liu C, Wang Z, Zong X, ** Y, Li D, **ong Y, Wu G. N & S co-doped carbon nanofiber network embedded with ultrafine NiCo nanoalloy for efficient oxygen electrocatalysis and Zn–air batteries. Nanoscale. 2020;12:9581.

    Article  CAS  Google Scholar 

  93. Wang Z, Ang J, Liu J, Ma XYD, Kong J, Zhang Y, Yan T, Lu X. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc–air battery. Appl Catal B Environ. 2020;263:118344.

    Article  CAS  Google Scholar 

  94. Lin H, **e J, Zhang Z, Wang S, Chen D. Perovskite nanoparticles@N-doped carbon nanofibers as robust and efficient oxygen electrocatalysts for Zn–air batteries. J Colloid Interfaces Sci. 2021;581:374.

    Article  CAS  Google Scholar 

  95. Ding W, Zhu H, Lu L, Zhang J, Yu H, Zhao H. Three-dimensional layered Fe–N/C catalysts built by electrospinning and the comparison of different active species on oxygen reduction reaction performance. J Alloys Compd. 2020;848:156605.

    Article  CAS  Google Scholar 

  96. Bai Q, Shen FC, Li SL, Liu J, Dong LZ, Wang ZM, Lan YQ. Cobalt@nitrogen-doped porous carbon fiber derived from the electrospun fiber of bimetal-organic framework for highly active oxygen reduction. Small Methods. 2018;2:1800049.

    Article  Google Scholar 

  97. Zheng W, Lv J, Zhang H, Zhang H-X, Zhang J. Co9S8 integrated into nitrogen/sulfur dual-doped carbon nanofibers as an efficient oxygen bifunctional electrocatalyst for Zn–air batteries. Sustain Energy Fuels. 2020;4:1093.

    Article  CAS  Google Scholar 

  98. Liu T, Li M, Bo X, Zhou M. Designing iron carbide embedded isolated boron (B) and nitrogen (N) atoms co-doped porous carbon fibers networks with tiny amount of BN bonds as high-efficiency oxygen reduction reaction catalysts. J Colloid Interface Sci. 2019;533:709.

    Article  CAS  Google Scholar 

  99. Guo J, Gao M, Nie J, Yin F, Ma G. ZIF-67/PAN-800 bifunctional electrocatalyst derived from electrospun fibers for efficient oxygen reduction and oxygen evolution reaction. J Colloid Interface Sci. 2019;544:112.

    Article  CAS  Google Scholar 

  100. Su J, Zang J, Tian P, Zhou S, Liu X, Li R, Wang Y, Dong L. Fe–N–Si tri-doped carbon nanofibers for efficient oxygen reduction reaction in alkaline and acidic media. Int J Hydrog Energy. 2020;45:28792.

    Article  CAS  Google Scholar 

  101. Feng L, Ding R, Chen Y, Wang J, Xu L. Zeolitic imidazolate framework-67 derived ultra-small CoP particles incorporated into N-doped carbon nanofiber as efficient bifunctional catalysts for oxygen reaction. J Power Sources. 2020;452:227837.

    Article  CAS  Google Scholar 

  102. Liu C, Wang J, Li J, Luo R, Sun X, Shen J, Han W, Wang L. Fe/N decorated mulberry-like hollow mesoporous carbon fibers as efficient electrocatalysts for oxygen reduction reaction. Carbon. 2017;114:706.

    Article  CAS  Google Scholar 

  103. Yin D, Han C, Bo X, Liu J, Guo L. Prussian blue analogues derived iron-cobalt alloy embedded in nitrogen-doped porous carbon nanofibers for efficient oxygen reduction reaction in both alkaline and acidic solutions. J Colloid Interface Sci. 2019;533:578.

    Article  CAS  Google Scholar 

  104. **e D, Yang G, Yu D, Hao Y, Han S, Cheng Y, Hu F, Li L, Wei H, Ji C, Peng S. MoS2 nanosheets functionalized multichannel hollow Mo2N/carbon nanofibers as a robust bifunctional catalyst for water electrolysis. ACS Sustain Chem Eng. 2020;8:14179.

    Article  Google Scholar 

  105. Liu L, Liu H, Sun X, Li C, Bai J. Efficient electrocatalyst of Pt–Fe/CNFs for oxygen reduction reaction in alkaline media. Int J Hydrog Energy. 2020;45:15112.

    Article  CAS  Google Scholar 

  106. Wei B, Xu G, Hei J, Zhang L, Huang T. PBA derived FeCoP nanoparticles decorated on NCNFs as efficient electrocatalyst for water splitting. Int J Hydrog Energy. 2021;46:2225.

    Article  CAS  Google Scholar 

  107. Shanmugapriya S, Zhu P, Yan C, Asiri AM, Zhang X, Selvan RK. Multifunctional high-performance electrocatalytic properties of Nb2O5 incorporated carbon nanofibers as Pt support catalyst. Adv Mater Interfaces. 2019;6:1900565.

    Article  Google Scholar 

  108. Mo Q, Zhang W, He L, Yu X, Gao Q. Bimetallic Ni2xCoxP/N-doped carbon nanofibers: solid-solution-alloy engineering toward efficient hydrogen evolution. Appl Catal B Environ. 2019;244:620.

    Article  CAS  Google Scholar 

  109. Wang Z, Li M, Fan L, Han J, **ong Y. Fe/Ni-N-CNFs electrochemical catalyst for oxygen reduction reaction/oxygen evolution reaction in alkaline media. Appl Surf Sci. 2017;401:89.

    Article  CAS  Google Scholar 

  110. Zhu Y, Zhou W, Zhong Y, Bu Y, Chen X, Zhong Q, Liu M, Shao Z. A perovskite nanorod as bifunctional electrocatalyst for overall water splitting. Adv Energy Mater. 2017;7:1602122.

    Article  Google Scholar 

  111. Liu Q, Wang Y, Dai L, Yao J. Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn–air batteries. Adv Mater. 2016;28:3000.

    Article  CAS  Google Scholar 

  112. Zhen D, Zhao B, Shin H-C, Bu Y, Ding Y, He G, Liu M. Electrospun porous perovskite La0.6Sr0.4Co1xFexO3δ nanofibers for efficient oxygen evolution reaction. Adv Mater Interfaces. 2017;4:1700146.

    Article  Google Scholar 

  113. Zhang C-L, Liu J-T, Li H, Qin L, Cao F-H, Zhang W. The controlled synthesis of Fe3C/Co/N-doped hierarchically structured carbon nanotubes for enhanced electrocatalysis. Appl Catal B Environ. 2020;261:118224.

    Article  CAS  Google Scholar 

  114. Li W, Li M, Wang C, Wei Y, Lu X. Fe doped CoO/C nanofibers towards efficient oxygen evolution reaction. Appl Surf Sci. 2020;506:144680.

    Article  CAS  Google Scholar 

  115. Yang L, Feng S, Xu G, Wei B, Zhang L. Electrospun MOF-based FeCo nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution reactions in zinc–air batteries. ACS Sustain Chem Eng. 2019;7:5462.

    Article  CAS  Google Scholar 

  116. Patil B, Satilmis B, Khalily MA, Uyar T. Atomic layer deposition of NiOOH/Ni(OH)2 on PIM-1-based N-doped carbon nanofibers for electrochemical water splitting in alkaline medium. Chemsuschem. 2019;12:1469.

    Article  CAS  Google Scholar 

  117. Ji D, Fan L, Li L, Mao N, Qin X, Peng S, Ramakrishna S. Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries. Carbon. 2019;142:379.

    Article  CAS  Google Scholar 

  118. Sankar SS, Karthick K, Sangeetha K, Kundu S. In situ modified nitrogen-enriched ZIF-67 incorporated ZIF-7 nanofiber: an unusual electrocatalyst for water oxidation. Inorg Chem. 2019;58:13826.

    Article  CAS  Google Scholar 

  119. Zhang L, Guo Q, Pitcheri R, Fu Y, Li J, Qiu Y. Silver nanofibers with controllable microstructure and crystal facet as highly efficient and methanol-tolerant oxygen reduction electrocatalyst. J Power Sources. 2019;413:233.

    Article  CAS  Google Scholar 

  120. Chen J, Chen J, Yu D, Zhang M, Zhu H, Du M. Carbon nanofiber-supported PdNi alloy nanoparticles as highly efficient bifunctional catalysts for hydrogen and oxygen evolution reactions. Electrochim Acta. 2017;246:17.

    Article  CAS  Google Scholar 

  121. Niu Q, Chen B, Guo J, Nie J, Guo X, Ma G. Flexible, porous, and metal-heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery. Nano Micro Lett. 2019;11:147.

    Article  Google Scholar 

  122. Rao P, Cui P, Wei Z, Wang M, Ma J, Wang Y, Zhao X. Integrated N–Co/carbon nanofiber cathode for highly efficient zinc–air batteries. ACS Appl Mater Interfaces. 2019;11:29708.

    Article  CAS  Google Scholar 

  123. Lee D, Kim HW, Kim JM, Kim KH, Lee SY. Flexible/rechargeable Zn–air batteries based on multifunctional heteronanomat architecture. ACS Appl Mater Interfaces. 2018;10:22210.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51871119, 51901100, and 22101132), Jiangsu Provincial Founds for Natural Science Foundation (BK20170793, BK20180015, and BK20210311), and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Hu or Shengjie Peng.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Hu, F., Chen, Y. et al. Recent Progress of Electrospun Nanofibers for Zinc–Air Batteries. Adv. Fiber Mater. 4, 185–202 (2022). https://doi.org/10.1007/s42765-021-00109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00109-4

Keywords

Navigation