Log in

Revenue sharing contracts of green fresh product considering freshness kee** effort

  • Original Article
  • Published:
Journal of Data, Information and Management Aims and scope Submit manuscript

Abstract

We investigate a two echelon green fresh product supply chain consisting of an upstream farmer who provides green fresh product and a downstream retailer who buys green fresh product and transports, storages, sells it to the consumer and needs to pay freshness kee** effort (FKE). This paper adopts the Stackelberg model under three different scenarios to investigate the decision-making problems for decentralized supply chain. Our results demonstrate that: First, the equilibrium decisions, comprised of wholesale price, greenness improvement level (GIL) and freshness kee** effort, are the largest when under the Nash bargaining revenue sharing scenario (BS), but the least when under the retailer-led no revenue sharing case (NS). Second, the retailer earns more profit when under Nash bargaining revenue sharing scenario than the farmer-led revenue sharing model (RS), and the NS scenario is the least. Whereas, the farmer's profit under the three scenarios depends on the specific parameter values. Third, the whole channel profit is the largest when under BS case, the RS case comes next and the NS case is the least. The findings provide compelling insights into how farmer and retailer can better manage their supply chain strategies when freshness kee** is concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://www.qianzhan.com/analyst/detail/220/181119-ba13a8e6.html

  2. http://www.forbes.com/2007/04/23/walmart-suppliers-margins-lead-cx\_tvr\_0423walmart.html

References

  • Avinadav T, Chernonog T, Meilijson I, Perlman Y (2022) A consignment contract with revenue sharing between an app developer and a distribution platform. Int J Prod Econ 243:108322

    Article  Google Scholar 

  • Bart N, Chernonog T, Avinadav T (2021) Revenue-sharing contracts in supply chains: a comprehensive literature review. Int J Prod Res 59(21):6633–6658

    Article  Google Scholar 

  • Bhargava HK (2022) The creator economy: Managing ecosystem supply, revenue sharing, and platform design. Manage Sci 68(7):5233–5251

    Article  Google Scholar 

  • Cachon G, Lariviere M (2005) Supply chain coordination with revenue-sharing contracts. Manage Sci 51(1):30–44

    Article  MATH  Google Scholar 

  • Cai X, Chen J, ** effort. Prod Oper Manag 19(3):261–278

    Article  Google Scholar 

  • Chen C (2001) Design for the environment: a quality-based model for green product development. Manage Sci 47(2):250–263

    Article  Google Scholar 

  • Chen H, Ma H (2021) The cooperation mechanism of the formal and informal recyclers based on information sharing. J Data Inf Manag 3:209–224

    Article  Google Scholar 

  • Chen Y, Zhang H, Yang Y (2022) Decisions on Fresh Mixed Dual Channel Supply Chain Considering Freshness-kee** Efforts. J Commercial Econ 841(06):48–52

    Google Scholar 

  • Chernonog T (2021) Strategic information sharing in online retailing under a consignment contract with revenue sharing. Ann Oper Res 300(2):621–641

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan-Bonari M, Bakhshi A, Aghsami A, Jolai F (2021) Green supply chain management through call option contract and revenue-sharing contract to cope with demand uncertainty. Clean Logist Supply Chain 2:100010

    Article  Google Scholar 

  • Dong Z, Zhou X, Lin Q (2022) Coordination of fresh products supply chain with freshness-kee** effort. J Syst Eng 37(03):362–374

    Google Scholar 

  • Ghosh D, Shah J (2015) Supply chain analysis under green sensitive consumer demand and cost sharing contract. Int J Prod Econ 164:319–329

    Article  Google Scholar 

  • Ketzenberg M, Bloemho J, Gaukler G (2015) Managing perishables with time and temperature history. Prod Oper Manag 24(1):54–70

    Article  Google Scholar 

  • Lan C, Yu X (2022) Revenue sharing-commission coordination contract for community group buying supply chain considering promotion effort. Alex Eng J 61(4):2739–2748

    Article  MathSciNet  Google Scholar 

  • Li T, Zhang R, Zhao S, Liu B (2019) Low carbon strategy analysis under revenue-sharing and cost-sharing contracts. J Clean Prod 212:1462–1477

    Article  Google Scholar 

  • Li Y, Tan C, Ip WH, Wu CH (2023) Dynamic blockchain adoption for freshness-kee** in the fresh agricultural product supply chain. Expert Syst Applic 217:119494

  • Liu C, Chen W, Zhou Q, Mu J (2021a) Modelling dynamic freshness-kee** effort over a finite time horizon in a two-echelon online fresh product supply chain. Eur J Oper Res 293(2):511–528

    Article  MathSciNet  MATH  Google Scholar 

  • Liu H, Zhang J, Zhou C, Ru Y (2018) Optimal purchase and inventory retrieval policies for perishable seasonal agricultural products. Omega-Int J Manag Sci 79:133–145

    Article  Google Scholar 

  • Liu M, Dan B, Zhang S, Ma S (2021b) Information sharing in an E-tailing supply chain for fresh produce with freshness-kee** effort and value-added service. Eur J Oper Res 290(2):572–584

    Article  MathSciNet  MATH  Google Scholar 

  • Liu S, Yao F, Chen D (2021c) CSR investment decision and coordination strategy for closed-loop supply chain with two competing retailers. J Clean Prod 310:127378

    Article  Google Scholar 

  • Ma X, Wang S, Islam S, Liu X (2019) Coordinating a three-echelon fresh agricultural products supply chain considering freshness-kee** effort with asymmetric information. Appl Math Model 67:337–356

    Article  MathSciNet  MATH  Google Scholar 

  • Ma X, Xu J, Peng W, Wang S (2021) Optimal freshness and carbon abatement decisions in a two-echelon cold chain. Appl Math Model 96:834–859

    Article  MathSciNet  MATH  Google Scholar 

  • Mondal C, Giri BC (2022) Analyzing a manufacturer-retailer sustainable supply chain under cap-and-trade policy and revenue sharing contract. Oper Res Int J 22(4):4057–4092

    Article  Google Scholar 

  • Moon I, Jeong Y, Saha S (2018) Investment and coordination decisions in a supply chain of fresh agricultural products. Oper Res 20:2307–2331

    Google Scholar 

  • Sharifi R, Razavi H, Elahi E (2023) Investigation of the ordering behavior of a retailer in the revenue sharing and buyback contracts considering round number bias. J Retail Consum Serv 73:103361

    Article  Google Scholar 

  • Wang B, Ji F, Zheng J, **e K, Feng Z (2021) Carbon emission reduction of coal-fired power supply chain enterprises under the revenue sharing contract: Perspective of coordination game. Energy Econ 102:105467

    Article  Google Scholar 

  • Wang G, Ding P, Chen H, Mu J (2020) Green fresh product cost sharing contracts considering freshness-kee** effort. Soft Comput 24:2671–2691

    Article  MATH  Google Scholar 

  • Wang G, Ma C (2023) Analysis of procurement strategies in a two-period fresh product supply chain. Kybernetes. https://doi.org/10.1108/k-09-2022-1233

    Article  Google Scholar 

  • Wu Z, Chen D, Yu H (2016) Coordination of a supply chain with consumer return under vendor-managed consignment inventory and stochastic demand. Int J Gen Syst 45(5):502–516

    Article  MathSciNet  MATH  Google Scholar 

  • Xu S, Tang H, Lin Z, Lu J (2022) Pricing and sales-effort analysis of dual-channel supply chain with channel preference, cross-channel return and free riding behavior based on revenue-sharing contract. Int J Prod Econ 249:108506

    Article  Google Scholar 

  • Yang D, Qiu L, Yan J, Chen Z, Jiang M (2019) The government regulation and market behavior of the new energy automotive industry. J Clean Prod 210:1281–1288

    Article  Google Scholar 

  • Yu Y, Han X, Hu G (2016) Optimal production for manufacturers considering consumer environmental awareness and green subsidies. Int J Prod Econ 182:397–408

    Article  Google Scholar 

  • Yu Y, **ao T (2021) Analysis of cold-chain service outsourcing modes in a fresh agri-product supply chain. Transport Res E Logist Transport Rev 148:102264

    Article  Google Scholar 

  • Zhang X, An S (2021) Dual-channel Supply Chain Coordination of Fresh Products Considering the Retailer’s Fairness Concern under Fresh-kee** Costs Sharing. Ind Eng Manag 26(02):15–22

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant (No. 72271185).

Funding

This work was supported by the National Natural Science Foundation of China under Grant (No. 72271185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoli Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. The decentralized channel case

For the decentralized channel case, the retailer's and the farmer's optimization problems can be formulated as

$$\underset{m,\eta }{\mathrm{max}}{\pi }_{R}^{\text{NS}}=m\left[a-b\left(m+w\right)+\alpha \theta +\beta \eta \right]-\frac{1}{2}L{\eta }^{2}$$

and

$$\underset{w,\theta }{\mathrm{max}}{\pi }_{F}^{\text{NS}}=\left(w-c\right)\left[a-b\left(m+w\right)+\alpha \theta +\beta \eta \right]-\frac{1}{2}K{\theta }^{2}$$

respectively.

According to the backward induction, we first solve the farmer's optimization problem. The Hessian Matrix is

$$\left[\begin{array}{cc}-2b& \alpha \\ \alpha & -K\end{array}\right]$$

By algebra, the Hessian Matrix is negative definite when \(2bK-{\alpha }^{2}>0\), thus, the farmer's objective function is joint concave with respect to the decision variables. The first order derivative is

$$\frac{\partial {\pi }_{F}^{\text{NS}}}{\partial w}=a-b\left(w+m\right)+\alpha \hspace{0.17em}\theta +\beta \eta -\left(w-c\right)b$$

and

$$\frac{\partial {\pi }_{F}^{\text{NS}}}{\partial \theta }=\left(w-c\right)\alpha -K$$

Equating the first order derivative to 0 and solving the equations, we get

$$\theta \left(m,\eta \right)=\frac{\alpha \hspace{0.17em}\left(\beta \eta -bc-bm+a\right)}{2\hspace{0.17em}Kb-{\alpha }^{2}}$$
(A1)

and

$$w\left(m,\eta \right)=\frac{K\eta \beta +Kbc-Kbm-{\alpha }^{2}c+Ka}{2\hspace{0.17em}Kb-{\alpha }^{2}}$$
(A2)

We substitute the Equations (A1)-(A2) into the retailer's objective function and derive

$$\underset{m,\eta }{\mathrm{max}}{\pi }_{R}^{\text{NS}}=\frac{L{\eta }^{2}{\alpha }^{2}-2bk\left[mb\left(c+m\right)-m\left(\beta \eta +a\right)+L{\eta }^{2}\right]}{4Kb-2{\alpha }^{2}}$$

By computing the first order derivative

$$\begin{array}{c}\frac{\partial {\pi }_{R}^{\text{NS}}}{\partial m}=\frac{bK\left[a+\beta \eta -bc-2mb\right]}{2Kb-{\alpha }^{2}}\\ \frac{\partial {\pi }_{R}^{\text{NS}}}{\partial \eta }=\frac{L\eta {\alpha }^{2}+bk\left(\beta m-2L\eta \right)}{2Kb-{\alpha }^{2}}\end{array}$$

and the second order derivative

$$\begin{array}{c}\frac{{\partial }^{2}{\pi }_{R}^{\text{NS}}}{\partial {m}^{2}}=-L\\ \frac{{\partial }^{2}{\pi }_{R}^{\text{NS}}}{\partial {\eta }^{2}}=\frac{L{\alpha }^{2}-2LbK}{2Kb-{\alpha }^{2}}\\ \frac{{\partial }^{2}{\pi }_{R}^{\text{NS}}}{\partial m\partial \eta }=\frac{\beta bK}{2Kb-{\alpha }^{2}}\end{array}$$

We can write the Hessian Matrix of \({\pi }_{R}\) as

$$\left[\begin{array}{cc}-L& \frac{\beta bK}{2Kb-{\alpha }^{2}}\\ \frac{\beta bK}{2Kb-{\alpha }^{2}}& \frac{L{\alpha }^{2}-2LbK}{2Kb-{\alpha }^{2}}\end{array}\right]$$

Through computing the Hessian Matrix, the retailer's profit function is joint concave with respect to the decision variables when \(4LbK-{\beta }^{2}K-2L{\alpha }^{2}>0\). Let the first order derivative be 0. We get

$${\eta }^{{\text{N}}{\text{S}}^{*}}=\frac{\beta K\left(a-bc\right)}{4LbK-{\beta }^{2}K-2L{\alpha }^{2}}$$

and

$${m}^{{\text{N}}{\text{S}}^{*}}=\frac{L\left({\alpha }^{2}bc+2Kab-a{\alpha }^{2}-2K{b}^{2}c\right)}{b\left(4LbK-{\beta }^{2}K-2L{\alpha }^{2}\right)}$$

Then, we have

$$\begin{array}{c}{\theta }^{{\text{N}}{\text{S}}^{*}}=\frac{L\alpha \left(a-bc\right)}{4LbK-{\beta }^{2}K-2L{\alpha }^{2}}\\ {w}^{{\text{N}}{\text{S}}^{*}}=\frac{\left[L\left(3bc+a\right)-c{\beta }^{2}\right]K-2Lc{\alpha }^{2}}{4LbK-{\beta }^{2}K-2L{\alpha }^{2}}\\ {p}^{{\text{N}}{\text{S}}^{*}}={w}^{{\text{N}}{\text{S}}^{*}}+{m}^{{\text{N}}{\text{S}}^{*}}=\frac{KL{b}^{2}c-Kb{\beta }^{2}c-L{\alpha }^{2}bc+3KLab-La{\alpha }^{2}}{b\left(4LbK-{\beta }^{2}K-2L{\alpha }^{2}\right)}\\ {\pi }_{R}^{{\text{N}}{\text{S}}^{*}}=\frac{KL{\left(a-bc\right)}^{2}}{2\left(4LbK-{\beta }^{2}K-2L{\alpha }^{2}\right)}\\ {\pi }_{F}^{{\text{N}}{\text{S}}^{*}}=\frac{K{L}^{2}{\left(a-bc\right)}^{2}\left(2Kb-{\alpha }^{2}\right)}{2{\left(4LbK-{\beta }^{2}K-2L{\alpha }^{2}\right)}^{2}}\\ {\pi }_{SC}^{{\text{N}}{\text{S}}^{*}}=\frac{KL{\left(-bc+a\right)}^{2}\left(6KLb-K{\beta }^{2}-3L{\alpha }^{2}\right)}{2{\left(4KLb-K{\beta }^{2}-2L{\alpha }^{2}\right)}^{2}}\end{array}$$

1.1 Proof of Proposition 3.1

Proof. We can easily get the results from the computational process.

1.2 Proof of Proposition 3.2

Proof. The above relationships can be proved easily through first order derivative.

Appendix B. Farmer-led revenue sharing model

For the farmer-led revenue sharing case, the farmer's and the retailer's optimization problems are formulated as

$$\underset{w,\theta }{\mathrm{max}}{\pi }_{F}^{\text{RS}}=\left[\left(w-c\right)\left[a-b\left(m+w\right)+\alpha \theta +\beta \eta \right]-\frac{1}{2}K{\theta }^{2}\right]\psi$$

and

$$\underset{m,\eta }{\mathrm{max}}{\pi }_{R}^{\text{RS}}=m\left[a-b\left(m+w\right)+\alpha \theta +\beta \eta \right]-\frac{1}{2}L{\eta }^{2}+\left[\left(w-c\right)\left[a-b\left(m+w\right)+\alpha \theta +\beta \eta \right]-\frac{1}{2}K{\theta }^{2}\right]\left(1-\psi \right)$$

respectively.

By using the backward induction approach, we solve for the farmer's objective function first.

The first order derivative

$$\begin{array}{c}\frac{\partial {\pi }_{F}^{\text{RS}}}{\partial w}=\left[a-b\left(m+w\right)+\alpha \theta +\beta \eta -\left(w-c\right)b\right]\psi\\ \frac{\partial {\pi }_{F}^{\text{RS}}}{\partial \theta }=\left[\left(w-c\right)\alpha -K\theta \right]\psi\end{array}$$

and the second order derivative

$$\begin{array}{c}\frac{{\partial }^{2}{\pi }_{F}^{\text{RS}}}{\partial {w}^{2}}=-2b\psi\\ \frac{{\partial }^{2}{\pi }_{F}^{\text{RS}}}{\partial {\theta }^{2}}=-K\psi\\ \frac{{\partial }^{2}{\pi }_{F}^{\text{RS}}}{\partial w\partial \theta }=\alpha\psi \end{array}$$

The Hessian Matrix can be written as

$$\left[\begin{array}{cc}-2b\psi & \alpha \psi \\ \alpha \psi & -K\psi \end{array}\right]$$

We can ascertain the Hessian Matrix is negative definite if \(2Kb{\psi }^{2}-{\alpha }^{2}{\psi }^{2}>0\).

Thus, the farmer's profit function is jointly concave in w and \(\theta\). Let the first order derivative be zero, we obtain

$$\theta \left(\eta ,m\right)=\frac{\alpha \left(-bc-bm+\beta \eta +a\right)}{2Kb-{\alpha }^{2}}$$
(B1)
$$w\left(\eta ,m\right)=\frac{Kbc-Kbm+K\beta \eta -{\alpha }^{2}c+ka}{2Kb-{\alpha }^{2}}$$
(B2)

Substituting the Equations (B1-B2) into the retailer's objective function and exerting derivatives.

According to the first order derivative

$$\begin{array}{c}\frac{\partial {\pi }_{R}^{\text{RS}}}{\partial m}=\frac{Kb\left(-bc\psi -bm\psi +\beta \eta \psi +a\psi -bm\right)}{2Kb-{\alpha }^{2}}\\ \frac{\partial {\pi }_{R}^{\text{RS}}}{\partial \eta }=\frac{-Kb\beta c\psi -Kb\beta m\psi +K{\beta }^{2}\eta \psi +2KLb\eta +Ka\beta \psi +Kb\beta c-K{\beta }^{2}\eta -L{\alpha }^{2}\eta -Ka\beta }{{\alpha }^{2}-2Kb}\end{array}$$

and the second order derivative

$$\begin{array}{c}\frac{{\partial }^{2}{\pi }_{R}^{\text{RS}}}{\partial {m}^{2}}=-\frac{{b}^{2}K\left(1+\psi \right)}{2Kb-{\alpha }^{2}}\\ \frac{{\partial }^{2}{\pi }_{R}^{\text{RS}}}{\partial {\eta }^{2}}=-\frac{K{\beta }^{2}\psi +2KLb-K{\beta }^{2}-L{\alpha }^{2}}{2Kb-{\alpha }^{2}}\\ \frac{{\partial }^{2}{\pi }_{R}^{\text{RS}}}{\partial m\partial \eta }=\frac{bK\beta \psi }{2Kb-{\alpha }^{2}}\end{array}$$

Then the Hessian Matrix is negative definite if

$$2KLb\psi -L{\alpha }^{2}\psi +2KLb-K{\beta }^{2}-L{\alpha }^{2}>0$$

By the first order derivative, we have

$$\begin{array}{c}\eta \left(\psi \right)=\frac{K\beta \left(-bc+a\right)}{2KLb\psi -L{\alpha }^{2}\psi +2KLb-K{\beta }^{2}-L{\alpha }^{2}}\\ m\left(\psi \right)=\frac{L\psi \left(-2K{b}^{2}c+{\alpha }^{2}bc+2Kab-a{\alpha }^{2}\right)}{b\left(2KLb\psi -L{\alpha }^{2}\psi +2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\end{array}$$

Substituting m and \(\eta\) into w, \(\theta\) and the farmer's objective function, we can obtain the farmer's profit function with respect to \(\psi\)

$${\pi }_{F}^{\text{RS}}\left(\psi \right)=\frac{1}{2}\frac{\psi \left(2Kb-{\alpha }^{2}\right){\left(-bc+a\right)}^{2}{L}^{2}K}{{\left(2KLb\psi -L{\alpha }^{2}\psi +2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}^{2}}$$

By computing the first order derivative and the second order derivative, we can ascertain the second order derivative is negative if 2KLbψ2ψ – 4KLb + 22 + 22 < 0. Thus, πFRS(ψ) is concave in \(\psi\) for the above condition. Solving the first order condition for \(\psi\) gives \(\psi =\frac{2KLb-K{\beta }^{2}-L{\alpha }^{2}}{L\left(2Kb-{\alpha }^{2}\right)}\).

Then we obtain

$$\begin{array}{c}{m}^{{\text{R}}{\text{S}}^{*}}=\frac{-bc+a}{2b}\\ {p}^{{\text{R}}{\text{S}}^{*}}={m}^{{\text{R}}{\text{S}}^{*}}+{w}^{{\text{R}}{\text{S}}^{*}}\\ {\eta }^{{\text{R}}{\text{S}}^{*}}=\frac{\left(-bc+a\right)\beta K}{2\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\\ {w}^{{\text{R}}{\text{S}}^{*}}=\frac{3KLbc-2K{\beta }^{2}c-2L{\alpha }^{2}c+KLa}{2\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\\ {\theta }^{{\text{R}}{\text{S}}^{*}}=\frac{\left(-bc+a\right)L\alpha }{2\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\\ {\pi }_{R}^{{\text{R}}{\text{S}}^{*}}=\frac{{\left(-bc+a\right)}^{2}LK}{4\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\\ {\pi }_{F}^{{\text{R}}{\text{S}}^{*}}=\frac{{\left(-bc+a\right)}^{2}LK}{8\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\\ {\pi }_{SC}^{{\text{R}}{\text{S}}^{*}}=\frac{3{\left(-bc+a\right)}^{2}LK}{8\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\end{array}$$

2.1 Proof of Proposition 3.3

Proof. We can easily get the results from the computational process.

Appendix C. Bargaining revenue sharing contract model

Due to the farmer and the retailer decide the revenue sharing proportion $\psi$ through bargaining, we formulate the objective function as

$$\underset{\psi }{\mathrm{max }}{\pi }_{F}^{\text{BS}}{\pi }_{R}^{\text{BS}}$$
(C1)

in which

$$\underset{w,\theta }{\mathrm{max}}{\pi }_{F}^{\text{BS}}=\left[\left(w-c\right)\left[a-b\left(m+w\right)+\alpha \theta +\beta \eta \right]-\frac{1}{2}K{\theta }^{2}\right]\psi$$

and

$$\underset{m,\eta }{\mathrm{max}}{\pi }_{R}^{\text{BS}}=m\left[a-b\left(m+w\right)+\alpha \theta +\beta \eta \right]-\frac{1}{2}L{\eta }^{2}+\left[\left(w-c\right)\left[a-b\left(m+w\right)+\alpha \theta +\beta \eta \right]-\frac{1}{2}K{\theta }^{2}\right]\left(1-\psi \right)$$

According to the game structure, we solve the farmer's optimization problem first and many steps are similarly with the farmer-led revenue sharing scenario. The only difference between BS and RS is that the solving process of \(\psi\), i.e., the \(\psi\) is determined by solving Equation (C1) while it's obtained via optimizing the farmer's optimization problem under the RS scenario. For the sake of brevity, we omitted the computational process before the solving of sharing proportion.

After get the expressions of \(m\left(\psi \right)\), \(\eta \left(\psi \right)\), \(\theta \left(\psi \right)\) and \(w\left(\psi \right)\), we substitute them into the Nash bargaining function (Equation C1). The Equation (C1) can be rewrite as

$$\underset{\psi }{\mathrm{max}} {\pi}^{\text{B}}\left(\psi \right)=\frac{{\left(-bc+a\right)}^{4}{K}^{2}{L}^{3}\psi \left(2Kb-{\alpha }^{2}\right)}{4{\left(2KLb\psi -L{\alpha }^{2}\psi +2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}^{3}}$$

By computing the first order derivative and the second order derivative of the bargaining model objective function. The first order derivative

$$\frac{{\text{d}}{\pi}^{\text{B}}}{{\text{d}}\psi }=-\frac{{\left(-cb+a\right)}^{4}{K}^{2}{L}^{3}\left(2Kb-{\alpha }^{2}\right)\left(4KLb\psi -2L{\alpha }^{2}\psi -2KLb+K{\beta }^{2}+L{\alpha }^{2}\right)}{4{\left(2KLb\psi -L{\alpha }^{2}\psi +2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}^{4}}$$

The second order derivative

$$\frac{{\text{d}}^{2}{\pi}^{\text{B}}}{{\text{d}}{\psi }^{2}}=\frac{3{\left(-cb+a\right)}^{4}{K}^{2}{L}^{4}{\left(2Kb-{\alpha }^{2}\right)}^{2}\left(2KLb\psi -L{\alpha }^{2}\psi -2KLb+K{\beta }^{2}+L{\alpha }^{2}\right)}{2{\left(2KLb\psi -L{\alpha }^{2}\psi +2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}^{5}}$$

The second order derivative is negative if

$$2KLb\psi -L{\alpha }^{2}\psi -2KLb+K{\beta }^{2}+L{\alpha }^{2}<0$$

Thus, the objective function is concave in \(\psi\) for the above condition. Let the first order derivative be 0. We obtain

$${\psi }^{{\text{B}}{\text{S}}^{*}}=\frac{2KLb-K{\beta }^{2}-L{\alpha }^{2}}{2L\left(2Kb-{\alpha }^{2}\right)}$$

Thus, the equilibrium decisions and profit functions are

$$\begin{array}{c}{\eta }^{{\text{B}}{\text{S}}^{*}}=\frac{2\beta K\left(-bc+a\right)}{3\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\\ {m}^{{\text{B}}{\text{S}}^{*}}=\frac{-bc+a}{3b}\\ {\theta }^{{\text{B}}{\text{S}}^{*}}=\frac{2L\alpha \left(-bc+a\right)}{3\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\\ {w}^{{\text{B}}{\text{S}}^{*}}=\frac{4KLbc-3K{\beta }^{2}c-3L{\alpha }^{2}c+2KLa}{3\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\\ {\pi }_{R}^{{\text{B}}{\text{S}}^{*}}=\frac{LK{\left(-bc+a\right)}^{2}}{3\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\\ {\pi }_{F}^{{\text{B}}{\text{S}}^{*}}=\frac{LK{\left(-bc+a\right)}^{2}}{9\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\\ {\pi }_{SC}^{{\text{B}}{\text{S}}^{*}}=\frac{4LK{\left(-bc+a\right)}^{2}}{9\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\end{array}$$

3.1 Proof of Proposition 3.4

Proof. We can get the results from the computational process.

Appendix D. Analysis regarding the equilibrium outcomes

4.1 Proof of Proposition4.1

Proof. It is can be easily proved through basic algebraic operation.

4.2 Proof of Proposition 4.2

Proof. We prove \({\eta }^{{\text{N}}{\text{S}}^{*}}<{\eta }^{{\text{R}}{\text{S}}^{*}}<{\eta }^{{\text{B}}{\text{S}}^{*}}\) for example. The proofs of other results can be done analogously.

$$\begin{array}{c}{\eta }^{{\text{R}}{\text{S}}^{*}}-{\eta }^{{\text{N}}{\text{S}}^{*}}=\frac{K\beta \left(-bc+a\right)}{2\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}-\frac{K\beta \left(-bc+a\right)}{4KLb-K{\beta }^{2}-2L{\alpha }^{2}}=\frac{{K}^{2}{\beta }^{3}\left(-bc+a\right)}{2\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)\left(4KLb-K{\beta }^{2}-2L{\alpha }^{2}\right)}\\ {\eta }^{{\text{B}}{\text{S}}^{*}}-{\eta }^{{\text{R}}{\text{S}}^{*}}=\frac{2K\beta \left(-bc+a\right)}{3\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}-\frac{K\beta \left(-bc+a\right)}{2\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}=\frac{K\beta \left(-bc+a\right)}{6\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\end{array}$$

Since \(-bc+a>0\) and \(2KLb-K{\beta }^{2}-L{\alpha }^{2}>0\), then \({\eta }^{{\text{N}}{\text{S}}^{*}}<{\eta }^{{\text{R}}{\text{S}}^{*}}<{\eta }^{{\text{B}}{\text{S}}^{*}}\) holds true.

4.3 Proof of Proposition 4.3

Proof.

$$\begin{array}{c}{\pi }_{R}^{{\text{R}}{\text{S}}^{*}}-{\pi }_{R}^{{\text{N}}{\text{S}}^{*}}=\frac{KL{\left(-bc+a\right)}^{2}}{4\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}-\frac{KL{\left(-bc+a\right)}^{2}}{2\left(4KLb-K{\beta }^{2}-2L{\alpha }^{2}\right)}=\frac{{K}^{2}L{\beta }^{2}{\left(-bc+a\right)}^{2}}{4\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)\left(4KLb-K{\beta }^{2}-2L{\alpha }^{2}\right)}\\ {\pi }_{R}^{{\text{B}}{\text{S}}^{*}}-{\pi }_{R}^{{\text{R}}{\text{S}}^{*}}=\frac{KL{\left(-bc+a\right)}^{2}}{3\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}-\frac{KL{\left(-bc+a\right)}^{2}}{4\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}=\frac{KL{\left(-bc+a\right)}^{2}}{12\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}\end{array}$$

It's easily proved that \({\pi }_{R}^{{\text{B}}{\text{S}}^{*}}-{\pi }_{R}^{{\text{R}}{\text{S}}^{*}}>0\) and \({\pi }_{R}^{{\text{R}}{\text{S}}^{*}}-{\pi }_{R}^{{\text{N}}{\text{S}}^{*}}>0\). Then, \({\pi }_{R}^{{\text{N}}{\text{S}}^{*}}<{\pi }_{R}^{{\text{R}}{\text{S}}^{*}}<{\pi }_{R}^{{\text{B}}{\text{S}}^{*}}\) holds true.

5.1 Proof of Proposition 4.4

Proof. By algebra, we have

$${\pi }_{SC}^{{\text{B}}{\text{S}}^{*}}-{\pi }_{SC}^{{\text{R}}{\text{S}}^{*}}=\frac{4KL{\left(-bc+a\right)}^{2}}{9\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}-\frac{3KL{\left(-bc+a\right)}^{2}}{8\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}=\frac{5KL{\left(-bc+a\right)}^{2}}{72\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}$$

and

$${\pi }_{SC}^{{\text{R}}{\text{S}}^{*}}-{\pi }_{SC}^{{\text{N}}{\text{S}}^{*}}=\frac{3KL{\left(-bc+a\right)}^{2}}{8\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right)}-\frac{KL{\left(-bc+a\right)}^{2}\left(6KLb-K{\beta }^{2}-3L{\alpha }^{2}\right)}{2{\left(4KLb-K{\beta }^{2}-2L{\alpha }^{2}\right)}^{2}}=\frac{{K}^{2}L{\beta }^{2}{\left(-bc+a\right)}^{2}\left(8KLb-K{\beta }^{2}-4L{\alpha }^{2}\right)}{8\left(2KLb-K{\beta }^{2}-L{\alpha }^{2}\right){\left(4KLb-K{\beta }^{2}-2L{\alpha }^{2}\right)}^{2}}$$

Owing to \(2KLb-K{\beta }^{2}-L{\alpha }^{2}>0\), we have \(8KLb-K{\beta }^{2}-4L{\alpha }^{2}>0\) and then \({\pi }_{R}^{{\text{B}}{\text{S}}^{*}}-{\pi }_{R}^{{\text{R}}{\text{S}}^{*}}>0\) and \({\pi }_{R}^{{\text{R}}{\text{S}}^{*}}-{\pi }_{R}^{{\text{N}}{\text{S}}^{*}}>0\). Thus, \({\pi }_{SC}^{{\text{N}}{\text{S}}^{*}}<{\pi }_{SC}^{{\text{R}}{\text{S}}^{*}}<{\pi }_{SC}^{{\text{B}}{\text{S}}^{*}}\) holds true.

5.2 Proof of Proposition 4.5

Proof. The results can be proved easily by using first order derivative.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Hao, Y. & Chen, R. Revenue sharing contracts of green fresh product considering freshness kee** effort. J. of Data, Inf. and Manag. 5, 177–191 (2023). https://doi.org/10.1007/s42488-023-00096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42488-023-00096-8

Keywords

Navigation