Log in

Numerical investigation on melting characteristics of scrap with heat and mass transfers in molten steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Herein, a numerical simulation with simultaneous heat and mass transfers is carried out to investigate the scrap melting characteristics in molten steel after model verification by published experimental data. The numerical results show that the scrap melting stages consist of the frozen shell formation stage, the frozen shell remelting stage and the parent scrap melting stage. The heat transfer coefficient and the carbon mass transfer coefficient between the scrap and the molten steel are, respectively, in the range of 4209–6249 W m−2 K−1 and 6.4 × 10–5 m s−1. Meanwhile, the effects of process parameters on scrap melting time were studied. An increase in the scrap preheating temperature \(\left( {T_{{{\text{scrap}}}} } \right)\), the molten steel temperature \(\left( {T_{{{\text{steel}}}} } \right)\) and the carbon content of molten steel \(\left( {C_{{{\text{steel}}}} } \right)\), and a decrease in the scrap thickness \(\left( {d_{{{\text{scrap}}}} } \right)\), can reduce the frozen shell existence time, as well as the scrap melting time. On this basis, a quantitative relationship between the aforementioned process parameters and the scrap melting time is obtained to predict the formation of frozen shell (Ψ), which provides process guidance for shortening the scrap melting time. The quantitative relationship is expressed as: \( \ln \left( \varPsi \right) = 311.32 - 2.34\ln \left( {T_{{{\text{scrap}}}} } \right) - 39.99\ln \left( {T_{{{\text{steel}}}} } \right) - 0.08\ln \left( {d_{{{\text{scrap}}}} } \right) - 0.57\ln \left( {C_{{{\text{steel}}}} } \right) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Shamsuddin, JOM 38 (1986) 24–31.

    Article  Google Scholar 

  2. C. Wang, M. Brämming, M. Larsson, Steel Res. Int. 84 (2013) 387–394.

    Article  Google Scholar 

  3. R.J. Compañero, A. Feldmann, A. Tilliander, J. Sust. Metall. 7 (2021) 1654–1670.

    Article  Google Scholar 

  4. T. Manabe, M. Miyata, K. Ohnuki, J. Sust. Metall. 5 (2019) 319–330.

    Article  Google Scholar 

  5. G. Wei, R. Zhu, T. Tang, K. Dong, Ironmak. Steelmak. 46 (2019) 609–617.

    Article  Google Scholar 

  6. X. **, S. Yang, J. Li, X. Chen, M. Ye, Ironmak. Steelmak. 47 (2020) 442–448.

    Article  Google Scholar 

  7. J. Li, N. Provatas, G. Brooks, Metall. Mater. Trans. B 36 (2005) 293–302.

    Article  Google Scholar 

  8. X. **, S. Chen, S. Yang, M. Ye, J. Li, ISIJ Int. 61 (2021) 190–199.

    Article  Google Scholar 

  9. X. **, S. Yang, J. Li, J. Wu, M. Zhao, M. Ye, Ironmak. Steelmak. 47 (2019) 748–756.

    Article  Google Scholar 

  10. M. Östman, Pre–study of models and map** physical modeling of scrap melting, Luleå University of Technology, Luleå, Sweden, 2006.

    Google Scholar 

  11. X. **, S. Li, S. Yang, M. Zhao, J. Li, Ironmak. Steelmak. 47 (2020) 1087–1099.

    Article  Google Scholar 

  12. S. Deng, A. Xu, G. Yang, H. Wang, Steel Res. Int. 90 (2019) 1800435.

    Article  Google Scholar 

  13. A. Kruskopf, L. Holappa, Metall. Res. Technol. 115 (2017) 201.

    Article  Google Scholar 

  14. J. Li, N. Provatas, Metall. Mater. Trans. B 39 (2008) 268–279.

    Article  Google Scholar 

  15. M. Gao, J.T. Gao, Y.L. Zhang, S.F. Yang, Int. J. Miner. Metall. Mater. 28 (2021) 380–389.

    Article  Google Scholar 

  16. O.J.P. Gonzalez, M.A. Ramirez-Argaez, A.N. Conejo, ISIJ Int. 50 (2010) 9–16.

    Article  Google Scholar 

  17. N. Arzpeyma, O. Widlund, M. Ersson, P. Joensson, ISIJ Int. 53 (2013) 48–55.

    Article  Google Scholar 

  18. F.M. Penz, J. Schenk, Steel Res. Int. 90 (2019) 1900124.

    Article  Google Scholar 

  19. A. Kemminger, F. Krause, L. Sankowski, N. Uebber, Steel Res. Int. 89 (2017) 1700098.

    Google Scholar 

  20. A.K. Shukla, P.B. Deo, International symposium for research scholars on metallurgy, Materials Science & Engineering, Chennai, India, 2006.

  21. M. Liu, G. Ma, X. Zhang, D. Zheng, Case Studies Thermal Eng. 34 (2022) 101995.

    Article  Google Scholar 

  22. R. Niu, B. Li, Z. Liu, X. Li, Steel Res. Int. 89 (2018) 1700407.

    Article  Google Scholar 

  23. A. Fluent, ANSYS Fluent Theory Guide, ANSYS Inc., Canonsburg, PA, USA, 2011, pp. 621–623.

    Google Scholar 

  24. J. Li, M. Wu, A. Kharicha, A. Ludwig, Int. J. Heat Mass Transf. 72 (2014) 668–679.

    Article  Google Scholar 

  25. N. Ren, J. Li, C. Panwisawas, M. **a, H. Dong, J. Li, Acta Mater. 206 (2021) 116620.

    Article  Google Scholar 

  26. N. Ren, J. Li, N. Bogdan, M. **a, J. Li, Computat. Mater. Sci. 180 (2020) 109714.

    Google Scholar 

  27. C. Yao, H. Zhu, Z. Jiang, T. Pan, Steel Res. Int. 92 (2021) 2000664.

    Article  Google Scholar 

  28. C. Yao, Z. Jiang, H. Zhu, T. Pan, Metals 12 (2022) 390.

    Article  Google Scholar 

  29. S. Zhang, J. Yu, H. Li, Z. Jiang, Y. Geng, H. Feng, B. Zhang, H. Zhu, J. Mater. Sci. Technol. 102 (2022) 105–114.

    Article  Google Scholar 

  30. H. Feng, H. Li, J. Dai, Y. Han, J. Qu, Z. Jiang, Y. Zhao, T. Zhang, Corros. Sci. 204 (2022) 110396.

    Article  Google Scholar 

  31. H. Zhu, H. Li, Z. Ni, Z. He, Z. Jiang, H. Feng, S. Zhang, D. Mao, Metall. Mater. Trans. B 53 (2022) 50–59.

    Article  Google Scholar 

  32. A.K. Shukla, B. Deo, D.G.C. Robertson, Metall. Mater. Trans. B 44 (2013) 1407–1427.

    Article  Google Scholar 

  33. K. Mori, H. Nomura, Tetsu-to-Hagane 55 (2010) 347–354.

    Article  Google Scholar 

  34. Q. Jiao, N. J. Themelis, Can. Metall. Quart. 32 (1993) 75–83.

    Article  Google Scholar 

  35. J. Szekely, Y.K. Chuang, J.W. Hlinka, Metall. Mater. Trans. B 3 (1972) 2825–2833.

    Article  Google Scholar 

  36. F.M. Penz, R.P. Tavares, C. Weiss, J. Schenk, R. Ammer, K. Pastucha, G. Klösch, Int. J. Heat Mass Transfer 138 (2019) 640–646.

    Article  Google Scholar 

  37. J.K. Wright, Metall. Mater. Trans. B 20 (1989) 363–374.

    Article  Google Scholar 

  38. H. Nomura, K. Mori, Tetsu-to-Hagane 55 (1969) 1134–1141.

    Article  Google Scholar 

  39. M.V. Ende, JOM 74 (2022) 1610–1623.

    Article  Google Scholar 

  40. A.G. Belkovskii, Y.L. Kats, Metallurgist 58 (2015) 950–958.

    Article  Google Scholar 

  41. V. Logar, I. Škrjanc, J. Sust. Metall. 7 (2021) 1013–1026.

    Article  Google Scholar 

  42. G. Wei, R. Zhu, X. Wu, L. Yang, K. Dong, T. Cheng, T. Tang, Metall. Mater. Trans. B 49 (2018) 1405–1420.

    Article  Google Scholar 

  43. G. Wei, R. Zhu, S. Yang, X. Wu, K. Dong, Ironmak. Steelmak. 48 (2021) 703–711.

    Article  Google Scholar 

  44. Y.N. Toulouevski, I.Y. Zinurov, Fuel Arc Furnace (FAF) for Effective Scrap Melting: From EAF to FAF, Springer Nature Singapore Pte Ltd., Singapore, 2017, pp. 25–39.

    Book  Google Scholar 

  45. Y.N. Toulouevski, I.Y. Zinurov, Electric Arc Furnace with Flat Bath, Springer International Publishing, Switzerland, 2015, pp. 117–132.

    Google Scholar 

  46. W.Y. Yang, X.F. Jiang, L. Li, X.Y. Peng, X.Q. Shi, Iron and Steel 52 (2017) No. 3, 27–35.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key R&D Program of China (Grant No. 2017YFB0304205) and Fundamental Research Funds for the Central Universities (Grant No. N2225046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-chun Zhu or Zhou-hua Jiang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Cl., Zhu, Hc., Jiang, Zh. et al. Numerical investigation on melting characteristics of scrap with heat and mass transfers in molten steel. J. Iron Steel Res. Int. 30, 1090–1100 (2023). https://doi.org/10.1007/s42243-022-00864-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00864-7

Keywords

Navigation