Log in

A first-principles study of Janus monolayer MXY (M = Mo, W; X, Y = S, Se, Te)/SiO2 van der Waals heterojunctions for integrated optical fibers

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Heterogeneous stacking of silica optical fiber materials and two-dimensional (2D) materials is a very effective strategy to design high-performance optoelectronic devices. Herein, first-principles calculations are performed to study the interface structures of Janus transition metal dichalcogenides (TMDs) monolayers deposited over silicon dioxide (SiO2). A series of van der Waals (vdW) heterostructures based on SiO2 and Janus MXY (M = Mo, W; X, Y = S, Se, Te) monolayers are investigated in geometric, electronic structures and optical properties. Through step-by-step screening, type-I heterojunctions with seven different contact types are investigated to be the best candidates. The interlayer spacing of these selected vdW heterostructures is large, and there is no covalent bond formed at the interface. For different interface contact types, massive electronic interactions are manifested at the Janus TMDs and SiO2 interfaces, indicating the influence of the vdW interactions on the electronic structure of the compound models. In addition, the optical absorption of silica optical fiber materials is enhanced by the composite of 2D Janus TMDs materials. This work could provide theoretical guidelines for the functional properties of the 2D materials’ composite silica optical fibers and contribute to the design of novel optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yin MJ, Gu BB, An QF, Yang CB, Guan YL, Yong KT (2018) Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications. Coord Chem Rev 376:348–392

    Article  CAS  Google Scholar 

  2. Zhang YN, Zhou L, Qiao D, Liu MY, Yang HY, Meng C, Miao T, Xue J, Yao YM (2022) Progress on optical fiber biochemical sensors based on graphene. Micromachines 13:348

    Article  Google Scholar 

  3. Chen JH, **ong YF, Xu F, Lu YQ (2021) Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology. Light Sci Appl 10:78

    Article  CAS  Google Scholar 

  4. ** W, Bao HH, Zhao PC, Zhao Y, Qi Y, Wang C, Ho HL (2021) Recent advances in spectroscopic gas sensing with micro/nano-structured optical fibers. Photonic Sens 11:141–157

    Article  CAS  Google Scholar 

  5. Zhang ZY, Zhao YH, Li ZH, Zhang LJ, Liu ZX, Long ZK, Li YJ, Liu Y, Fan RH, Sun K, Zhang ZD (2022) Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Adv Compos Hybrid Ma 5:513–524

    Article  CAS  Google Scholar 

  6. Lin S, Liu JC, Li WZ, Wang D, Huang Y, Jia C, Li ZW, Murtaza M, Wang HY, Song JN, Liu ZL, Huang K, Zu D, Lei M, Hong B, Wu H (2019) A flexible, robust, and gel-free electroencephalogram electrode for noninvasive brain-computer interfaces. Nano Lett 19:6853–6861

    Article  CAS  Google Scholar 

  7. Ma H, Shi J, Zhu XY, Zhang Z, Li JG, Cao SK (2019) AuNRs/mesoporous silica/hydroxyapatite nanovehicles with thermally responsive polymeric cap for remotely controlled drug delivery. Adv Compos Hybrid Ma 2:242–253

    Article  CAS  Google Scholar 

  8. Zuo YG, Yu WT, Liu C, Cheng X, Qiao RX, Liang J, Zhou X, Wang JH, Wu MH, Zhao Y, Gao P, Wu SW, Sun ZP, Liu KH, Bai XD, Liu ZF (2020) Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat Nanotechnol 15:987–991

    Article  CAS  Google Scholar 

  9. ** ZH, Ye F, Zhang X, Jia S, Dong LL, Lei SD, Vajtai R, Robinson JT, Lou J, Ajayan PM (2018) Near-field coupled integrable two-dimensional InSe photosensor on optical fiber. ACS Nano 12:12571–12577

    Article  CAS  Google Scholar 

  10. Chen JH, Tan J, Wu GX, Zhang XJ, Xu F, Lu YQ (2019) Tunable and enhanced light emission in hybrid WS2-optical-fiber-nanowire structures. Light Sci Appl 8:8

    Article  Google Scholar 

  11. You J, Luo YK, Yang J, Zhang JH, Yin K, Wei K, Zheng X, Jiang T (2020) Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photonics Rev 14:2000239

    Article  CAS  Google Scholar 

  12. Wu JH, Ma H, Yin P, Ge YQ, Zhang YP, Li L, Zhang H, Lin HT (2021) Two-dimensional materials for integrated photonics: recent advances and future challenges. Small Science 1:2000053

    Article  CAS  Google Scholar 

  13. Wang HQ, Zhang C, Zhou B, Zhang ZH, Shen J, Du A (2019) Ultra-black carbon@ silica core-shell aerogels with controllable electrical conductivities. Adv Compos Hybrid Ma 2:743–752

    Article  CAS  Google Scholar 

  14. Bi K, Wang QM, Xu JC, Chen LH, Lan CW, Lei M (2021) All-dielectric metamaterial fabrication techniques. Adv Opt Mater 9:2001474

    Article  CAS  Google Scholar 

  15. Su XY, Cui HL, Ju WW, Yong YL, Li XH (2017) First-principles investigation of MoS2 monolayer adsorbed on SiO2 (0001) surface. Mod Phys Lett B 31:1750229

    Article  Google Scholar 

  16. Sung HJ, Choe DH, Chang KJ (2014) The effects of surface polarity and dangling bonds on the electronic properties of monolayer and bilayer MoS2 on α-quartz. New J Phys 16:113055

    Article  Google Scholar 

  17. Park Y, Chan CCS, Taylor RA, Kim Y, Kim N, Jo Y, Lee SW, Yang W, Im H, Lee G (2018) Temperature induced crossing in the optical bandgap of mono and bilayer MoS2 on SiO2. Sci Rep 8:5380

    Article  Google Scholar 

  18. Sinha S, Kumar S, Arora SK, Jha SN, Kumar Y, Gupta V, Tomar M (2021) Study of band alignment at MoS2/SiO2 interfaces grown by pulsed laser deposition method. J Appl Phys 129:115303

    Article  Google Scholar 

  19. Dolui K, Rungger I, Sanvito S (2013) Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate. Phys Rev B 87:165402

    Article  Google Scholar 

  20. Park J, Yeu IW, Han G, Hwang CS, Choi JH (2019) Role of the short-range order in amorphous oxide on MoS2/a-SiO2 and MoS2/a-HfO2 interfaces. Phys Status Solidi B 256:1900002

    Article  Google Scholar 

  21. Pan R, Fan XL, Zhang H, Yang Y (2016) First-principles investigation on the interface of transition metal dichalcogenide MX2 (M= Mo, W; X= S, Se) monolayer on Al2O3 (0001). Comp Mater Sci 122:118–125

    Article  CAS  Google Scholar 

  22. Wei MY, Zhang YF, Lian J, Yang PF, Shi YJ, Dai K, Jiang QF, Zhang Y, Wang CL (2021) Optical properties of molybdenum disulfide on different substrates affected by spin-orbit coupling. Opt Mater 114:110954

    Article  CAS  Google Scholar 

  23. Hu YQ, Yip PS, Tang CW, Lau KM, Li Q (2018) Interface passivation and trap reduction via hydrogen fluoride for molybdenum disulfide on silicon oxide back-gate transistors. Semicond Sci Technol 33:045005

    Article  Google Scholar 

  24. Zhou L, Zhang HW, Bao HM, Wei Y, Fu H, Cai WP (2019) Monodispersed snowman-like Ag-MoS2 Janus nanoparticles as chemically self-propelled nanomotors. ACS Appl Nano Mater 3:624–632

    Article  Google Scholar 

  25. Zhou JH, Pi QM, Zhang XW, Maharjan S, Li YB (2021) Heterogeneous integration of AuNRs monolayer with MoS2 film assembled for highly efficient surface-enhanced Raman scattering and significant in improvement electrical conductivity. Colloid Surface A 622:126546

    Article  CAS  Google Scholar 

  26. Zhang S, Deng QC, Shangguan HJ, Zheng C, Shi J, Huang FH, Tang B (2020) Design and preparation of carbon nitride-based amphiphilic Janus N-doped carbon/MoS2 nanosheets for interfacial enzyme nanoreactor. ACS Appl Mater Inter 12:12227–12237

    Article  CAS  Google Scholar 

  27. Zhang Q, Liu BQ, Ji Y, Chen LH, Zhang LY, Li L, Wang CG (2020) Construction of hierarchical yolk–shell nanospheres organized by ultrafine Janus subunits for efficient overall water splitting. Nanoscale 12:2578–2586

    Article  CAS  Google Scholar 

  28. Ahmad H, Lim HS, MatJafri MZ, Ge YQ, Zhang H, Tiu ZC (2019) All-fiber optical polarization modulation system using MoS2 as modulator. Infrared Phys Techn 102:103002

    Article  CAS  Google Scholar 

  29. Liu C, Lu YH, Yu XT, Shen RJ, Wu ZM, Yang ZS, Yan YF, Feng LX, Lin SS (2022) Hot carriers assisted mixed-dimensional graphene/MoS2/p-GaN light emitting diodes. Carbon 197:192–199

    Article  CAS  Google Scholar 

  30. Kravets VG, Wu F, Auton GH, Yu T, Imaizumi S, Grigorenko AN (2019) Measurements of electrically tunable refractive index of MoS2 monolayer and its usage in optical modulators. Npj 2D Mater Appl 3:36

    Article  Google Scholar 

  31. Sharma R, Laishram R, Gupta BK, Srivastva R, Sinha OP (2022) A review on MX2 (M= Mo, W and X= S, Se) layered material for opto-electronic devices. Adv Nat Sci Nanosci 13:023001

    Article  Google Scholar 

  32. Cucchi I, Gutiérrez-Lezama I, Cappelli E, McKeown Walker S, Bruno FY, Tenasini G, Wang L, Ubrig N, Barreteau C, Giannini E, Gibertini M, Tamai A, Morpurgo AF, Baumberger F (2018) Microfocus laser-angle-resolved photoemission on encapsulated mono-, bi-, and few-layer 1T′-WTe2. Nano Lett 19:554–560

    Article  Google Scholar 

  33. Huo NJ, Kang J, Wei ZM, Li SS, Li JB, Wei SH (2014) Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv Funct Mater 24:7025–7031

    Article  CAS  Google Scholar 

  34. Bao QL, Zhang H, Wang Y, Ni ZH, Yan YL, Shen ZX, Loh KP, Tang DY (2009) Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater 19:3077–3083

    Article  CAS  Google Scholar 

  35. Cheng Z, Cao R, Guo J, Yao YH, Wei KK, Gao S, Wang YZ, Dong JJ, Zhang H (2020) Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics 9:1973–1979

    Article  CAS  Google Scholar 

  36. Liao F, Yu JX, Gu ZQ, Yang ZY, Hasan T, Linghu S, Peng J, Fang W, Zhuang S, Gu M, Gu F (2019) Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing. Sci Adv 5:7398

    Article  Google Scholar 

  37. Shi Y, Song XW, Han XX, Zhang MX, Dong MY (2021) Influences of additives on crystal multiformity and composition in a CaO-Al2O3-MgO-SiO2-based glass-ceramics. Adv Compos Hybrid Ma 4:614–628

    Article  CAS  Google Scholar 

  38. Duan XY, Cheng SS, Tao RY, Zhang ZY, Zhao GZ (2022) Synergistically enhanced thermal control ability and mechanical properties of natural rubber for tires through a graphene/silica with a dot-face structure. Adv Compos Hybrid Ma 5:1145–1157

    Article  Google Scholar 

  39. Ma R, Cui B, Hu DW, El-Bahy SM, Wang Y, Azab IHE, Elnaggar AY, Gu HX, Mersal GAM, Huang M, Murugadoss V (2022) Enhanced energy storage of lead-free mixed oxide core double-shell barium strontium zirconate titanate@ magnesium aluminate@ zinc oxide-boron trioxide-silica ceramic nanocomposites. Adv Compos Hybrid Ma 5:1477–1489

    Article  CAS  Google Scholar 

  40. Albargi H, Albargi H, Umar A, Shkir M (2021) Enhanced photoresponsivity of anatase titanium dioxide (TiO2)/nitrogen-doped graphene quantum dots (N-GQDs) heterojunction-based photodetector. Adv Compos Hybrid Ma 4:1354–1366

    Article  Google Scholar 

  41. Sarwar S, Lin MC, Ahasan MR, Wang YF, Wang RG, Zhang XY (2022) Direct growth of cobalt-doped molybdenum disulfide on graphene nanohybrids through microwave irradiation with enhanced electrocatalytic properties for hydrogen evolution reaction. Adv Compos Hybrid Ma 1–14

  42. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  43. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  44. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  45. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  47. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  48. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  49. Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scr Mater 108:1–5

    Article  CAS  Google Scholar 

  50. Khosa GS, Kumar R, Gupta S (2021) Engineering the electronic structure and transport coefficients of Janus MoSSe monolayer by applying z-axial strain. Mater Today 45:5597–5601

    Google Scholar 

  51. Ding ZY, Yang SW, Wu G, Yang XP (2021) Geometry and greatly enhanced thermoelectric performance of monolayer MXY transition-metal dichalcogenide: MoSTe as an example. Phys Status Solidi-R 15:2100166

    Article  CAS  Google Scholar 

  52. Yang XY, Singh D, Xu ZT, Wang ZW, Ahuja R (2019) An emerging Janus MoSeTe material for potential applications in optoelectronic devices. J Mater Chem C 7:12312–12320

    Article  CAS  Google Scholar 

  53. Farkous M, El-Yadri M, Erguig H, Pérez LM, Laroze D, Nguyen CV, Binh NTT, Hieu NN, Phuc HV, Sadoqi M, Long G, Feddi E (2021) Anisotropy of effective masses induced by strain in Janus MoSSe and WSSe monolayers. Physica E Low Dimens Syst Nanostruct 134:114826

    Article  CAS  Google Scholar 

  54. Patel A, Singh D, Sonvane Y, Thakor PB, Ahuja R (2020) High thermoelectric performance in two-dimensional Janus monolayer material WS-X (X = Se and Te). Acs Appl Mater Inter 12:46212–46219

    Article  CAS  Google Scholar 

  55. Vu TV, Hieu NV, Phuc HV, Hieu NN, Bui HD, Idrees M, Amin B, Nguyen CV (2020) Graphene/WSeTe van der Waals heterostructure: controllable electronic properties and Schottky barrier via interlayer coupling and electric field. Appl Surf Sci 507:145036

    Article  CAS  Google Scholar 

  56. Martin-Samos L, Bussi G, Ruini A, Molinari E, Caldas MJ (2011) SiO2 in density functional theory and beyond. Phys Status Solidi B 248:1061–1066

    Article  CAS  Google Scholar 

  57. Chen JH, He XJ, Sa BS, Zhou J, Xu C, Wen CL, Sun ZM (2019) III-VI van der Waals heterostructures for sustainable energy related applications. Nanoscale 11:6431–6444

    Article  CAS  Google Scholar 

  58. Björkman T, Gulans A, Krasheninnikov AV, Nieminen RM (2012) van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys Rev Lett 108:235502

    Article  Google Scholar 

  59. Robertson J (2000) Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vac Sci Technol B 18:1785–1791

    Article  CAS  Google Scholar 

  60. Robertson J (2013) Band offsets, Schottky barrier heights, and their effects on electronic devices. J Vac Sci Technol A 31:050821

    Article  Google Scholar 

  61. Wang Q, Zhao ZY, Bai PK, Du WB, Liao HH, Li YX, Liang MJ, Huo PC, Zhang LZ, Tie D (2021) Effects of alloying elements X (Cr, Mn, Mo, Ni, Si) on the interface stability of TiC (001)/γ-Fe (001) in TiC/316L stainless steel composite formed by selective laser melting: first principles and experiments. Adv Compos Hybrid Ma 4:195–204

    Article  CAS  Google Scholar 

  62. Wu YF, Huang K, Weng XD, Wang RY, Du P, Liu JC, Lin S, Huang K, Yang HJ, Lei M (2022) PVB coating efficiently improves the high stability of EMI shielding fabric with Cu/Ni. Adv Compos Hybrid Ma 5:71–82

    Article  CAS  Google Scholar 

  63. Niu M, Sui KY, Wu XS, Cao DP, Liu CZ (2022) GaAs quantum dot/TiO2 heterojunction for visible-light photocatalytic hydrogen evolution: promotion of oxygen vacancy. Adv Compos Hybrid Ma 5:450–460

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the helpful discussion with Prof. Pengfei Guan and the computational support from the Bei**g Computational Science Research Center (CSRC).

Funding

This study is supported financially by the National Key Research and Development Program of China (No.2021YFB3601201), the Open-Foundation of Key Laboratory of Laser Device Technology, and China North Industries Group Corporation Limited (Grant No. KLLDT202103).

Author information

Authors and Affiliations

Authors

Contributions

**aoning Guan, Qian Zhang, and Chao Dong: Data curation; Investigation; Methodology; Roles/Writing—original draft; Writing—review and editing. Ru Zhang and Mugen Peng: Conceptualization; Data curation; Formal analysis; Roles/Writing—original draft; Writing—review and editing. Gang Liu and Ming lei: Methodology; Funding acquisition; Roles/Writing—original draft; Writing—review and editing. Pengfei Lu: Investigation; Methodology; Validation. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Gang Liu or Ming Lei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 312 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Zhang, Q., Dong, C. et al. A first-principles study of Janus monolayer MXY (M = Mo, W; X, Y = S, Se, Te)/SiO2 van der Waals heterojunctions for integrated optical fibers. Adv Compos Hybrid Mater 5, 3232–3244 (2022). https://doi.org/10.1007/s42114-022-00557-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00557-5

Keywords

Navigation