Log in

Computational Challenges for Multi-loop Collider Phenomenology

A Snowmass 2021 White Paper

  • Review
  • Published:
Computing and Software for Big Science Aims and scope Submit manuscript

Abstract

Precision measurements at the LHC and future colliders require theory predictions with uncertainties at the percent level for many observables. Theory uncertainties due to the perturbative truncation are particularly relevant and must be reduced to fully exploit the physics potential of collider experiments. In recent years the theoretical high energy physics community has made tremendous analytical and numerical advances to address this challenge. In this white paper, we survey state-of-the-art calculations in perturbative quantum field theory for collider phenomenology with a particular focus on the computational requirements at high perturbative orders. We show that these calculations can have specific high-performance-computing (HPC) profiles that should to be taken into account in future HPC resource planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

Notes

  1. see also the Snowmass QCD working group report [2].

References

  1. Hoche et al S (2013) Working group report: computing for perturbative QCD. In: Community summer study 2013: snowmass on the Mississippi, vol 9, pp 2013

  2. Campbell et al JM (2013) Working group report: quantum chromodynamics. In: community summer study 2013: snowmass on the Mississippi, vol 10, pp 2013

  3. Bern Z, Dixon LJ, Febres Cordero F, Höche S, Ita H, Kosower DA et al (2013) Next-to-leading order \(W + 5\)-jet production at the LHC. Phys Rev D 88:014025

    Article  ADS  Google Scholar 

  4. Melnikov K, Petriello F (2006) The \(W\) boson production cross section at the LHC through \(O(\alpha ^2_s)\). Phys Rev Lett 96:231803

    Article  ADS  Google Scholar 

  5. Li Y, Petriello F (2012) Combining QCD and electroweak corrections to dilepton production in FEWZ. Phys Rev D 86:094034

    Article  ADS  Google Scholar 

  6. Anastasiou C, Melnikov K, Petriello F (2005) Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order. Nucl Phys B 724:197

    Article  ADS  Google Scholar 

  7. Bärnreuther P, Czakon M, Mitov A (2012) Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to \(q \bar{q} \rightarrow t \bar{t} + X\). Phys Rev Lett 109:132001

    Article  ADS  Google Scholar 

  8. Czakon M, Fiedler P, Mitov A (2013) Total top-quark pair-production cross section at Hadron colliders through \(O(\alpha ^4_S)\). Phys Rev Lett 110:252004

    Article  ADS  Google Scholar 

  9. Gehrmann-De Ridder A, Gehrmann T, Glover EWN, Pires J (2013) Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution. Phys Rev Lett 110:162003

    Article  ADS  Google Scholar 

  10. Boughezal R, Caola F, Melnikov K, Petriello F, Schulze M (2013) Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD. JHEP 06:072

    Article  ADS  Google Scholar 

  11. Campbell J, Neumann T (2019) Precision Phenomenology with MCFM. JHEP 12:034

    Article  ADS  Google Scholar 

  12. Weinzierl S, Feynman integrals, ar**v.org/abs/2201.03593

  13. Heller M, von Manteuffel A, Schabinger RM (2020) Multiple polylogarithms with algebraic arguments and the two-loop EW-QCD Drell–Yan master integrals. Phys Rev D 102:016025

    Article  ADS  MathSciNet  Google Scholar 

  14. Moriello F (2020) Generalised power series expansions for the elliptic planar families of Higgs + jet production at two loops. JHEP 01:150

    Article  ADS  MathSciNet  Google Scholar 

  15. Agarwal B, Jones SP, von Manteuffel A (2021) Two-loop helicity amplitudes for \(gg \rightarrow ZZ\) with full top-quark mass effects. JHEP 05:256

    Article  ADS  MathSciNet  Google Scholar 

  16. Brønnum-Hansen C, Wang C-Y (2021) Contribution of third generation quarks to two-loop helicity amplitudes for W boson pair production in gluon fusion. JHEP 01:170

    Article  ADS  MathSciNet  Google Scholar 

  17. Brønnum-Hansen C, Wang C-Y (2021) Top quark contribution to two-loop helicity amplitudes for \(Z\) boson pair production in gluon fusion. JHEP 05:244

    Article  ADS  Google Scholar 

  18. Brønnum-Hansen C, Melnikov K, Quarroz J, Wang C-Y (2021) On non-factorisable contributions to t-channel single-top production. JHEP 11:130

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Papadopoulos CG, Tommasini D, Wever C (2016) The Pentabox master integrals with the simplified differential equations approach. JHEP 04:078

    ADS  Google Scholar 

  20. Gehrmann T, Henn JM, Lo Presti NA (2018) Pentagon functions for massless planar scattering amplitudes. JHEP 10:103

    Article  ADS  MATH  Google Scholar 

  21. Abreu S, Ita H, Moriello F, Page B, Tschernow W, Zeng M (2020) Two-loop integrals for planar five-point one-mass processes. JHEP 11:117

    Article  ADS  MathSciNet  Google Scholar 

  22. Canko DD, Papadopoulos CG, Syrrakos N (2021) Analytic representation of all planar two-loop five-point Master Integrals with one off-shell leg. JHEP 01:199

    Article  ADS  MathSciNet  Google Scholar 

  23. Chicherin D, Sotnikov V (2020) Pentagon functions for scattering of five massless particles. JHEP 20:167

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Badger S, Hartanto HB, Zoia S (2021) Two-loop QCD corrections to Wbb\(^-\) production at Hadron colliders. Phys Rev Lett 127:012001

    Article  ADS  Google Scholar 

  25. Chicherin D, Sotnikov V, Zoia S (2022) Pentagon functions for one-mass planar scattering amplitudes. JHEP 01:096

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Abreu S, Ita H, Page B, Tschernow W (2022) Two-loop hexa-box integrals for non-planar five-point one-mass processes. JHEP 03:182

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Papadopoulos CG, Wever C (2020) Internal reduction method for computing Feynman integrals. JHEP 02:112

    Article  ADS  MathSciNet  Google Scholar 

  28. Kardos A, Papadopoulos CG, Smirnov AV, Syrrakos N, Wever C Two-loop non-planar hexa-box integrals with one massive leg, ar**v.org/abs/2201.07509

  29. Henn J, Mistlberger B, Smirnov VA, Wasser P (2020) Constructing d-log integrands and computing master integrals for three-loop four-particle scattering. JHEP 04:167

    Article  ADS  MathSciNet  Google Scholar 

  30. Canko DD, Syrrakos N Planar three-loop master integrals for \(2 \rightarrow 2\) processes with one external massive particle, ar**v.org/abs/2112.14275

  31. Henn JM, Smirnov AV, Smirnov VA, Steinhauser M (2016) A planar four-loop form factor and cusp anomalous dimension in QCD. JHEP 05:066

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Henn JM, Peraro T, Stahlhofen M, Wasser P (2019) Matter dependence of the four-loop cusp anomalous dimension. Phys Rev Lett 122:201602

    Article  ADS  Google Scholar 

  33. Henn JM, Korchemsky GP, Mistlberger B (2020) The full four-loop cusp anomalous dimension in \(\cal{N}=4\) super Yang–Mills and QCD. JHEP 04:018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. von Manteuffel A, Schabinger RM (2019) Planar master integrals for four-loop form factors. JHEP 05:073

    Article  MathSciNet  MATH  Google Scholar 

  35. von Manteuffel A, Panzer E, Schabinger RM (2020) Cusp and collinear anomalous dimensions in four-loop QCD from form factors. Phys Rev Lett 124:162001

    Article  ADS  Google Scholar 

  36. Agarwal B, von Manteuffel A, Panzer E, Schabinger RM Four-loop collinear anomalous dimensions in QCD and \(\cal{N} = 4\) super Yang–Mills, ar**v.org/abs/2102.09725

  37. Lee RN, von Manteuffel A, Schabinger RM, Smirnov AV, Smirnov VA, Steinhauser M (2021) Fermionic corrections to quark and gluon form factors in four-loop QCD. Phys Rev D 104:074008

    Article  ADS  MathSciNet  Google Scholar 

  38. Lee RN, von Manteuffel A, Schabinger RM, Smirnov AV, Smirnov VA, Steinhauser M Quark and gluon form factors in four-loop QCD, ar**v.org/abs/2202.04660

  39. Kotikov A (1991) Differential equations method: new technique for massive Feynman diagrams calculation. Phys Lett B 254:158

    Article  ADS  MathSciNet  Google Scholar 

  40. Bern Z, Dixon LJ, Kosower DA (1994) Dimensionally regulated pentagon integrals. Nucl Phys B 412:751

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Remiddi E (1997) Differential equations for Feynman graph amplitudes. Nuovo Cim A 110:1435

    Article  ADS  Google Scholar 

  42. Henn JM (2013) Multiloop integrals in dimensional regularization made simple. Phys Rev Lett 110

  43. Brown F (2009) The Massless higher-loop two-point function. Commun Math Phys 287:925

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Panzer E (2015) Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals. Comput Phys Commun 188:148

    Article  ADS  MATH  Google Scholar 

  45. von Manteuffel A, Panzer E, Schabinger RM (2016) On the computation of form factors in massless QCD with finite master integrals. Phys Rev D 93:125014

    Article  ADS  Google Scholar 

  46. Bonetti M, Panzer E, Smirnov VA, Tancredi L (2020) Two-loop mixed QCD-EW corrections to \(gg \rightarrow Hg\). JHEP 11:045

    Article  ADS  Google Scholar 

  47. Remiddi E, Vermaseren JAM (2000) Harmonic polylogarithms. Int J Mod Phys A 15:725

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Goncharov AB Multiple polylogarithms and mixed Tate motives, ar**v.org/abs/math/0103059

  49. Brown F, Levin A Multiple elliptic polylogarithms, ar**v.org/abs/1110.6917

  50. Bloch S, Vanhove P The elliptic dilogarithm for the sunset graph, ar**v.org/abs/1309.5865

  51. Adams L, Bogner C, Weinzierl S The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case, ar**v.org/abs/1504.03255

  52. Ablinger J, Blümlein J, De Freitas A, van Hoeij M, Imamoglu E, Raab CG et al (2018) Iterated elliptic and hypergeometric integrals for Feynman diagrams. J Math Phys 59:062305

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Remiddi E, Tancredi L (2017) An elliptic generalization of multiple polylogarithms. Nucl Phys B 925:212

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Broedel J, Duhr C, Dulat F, Tancredi L (2018) Elliptic polylogarithms and iterated integrals on elliptic curves, part I: general formalism. JHEP 05:093

    Article  ADS  MathSciNet  Google Scholar 

  55. Vollinga J, Weinzierl S (2005) Numerical evaluation of multiple polylogarithms. Comput Phys Commun 167:177

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Naterop L, Signer A, Ulrich Y (2020) handyG –Rapid numerical evaluation of generalised polylogarithms in Fortran. Comput Phys Commun 253:107165

    Article  MathSciNet  Google Scholar 

  57. Duhr C, Tancredi L (2020) Algorithms and tools for iterated Eisenstein integrals. JHEP 02:105

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Walden M, Weinzierl S (2021) Numerical evaluation of iterated integrals related to elliptic Feynman integrals. Comput Phys Commun 265:108020

    Article  MathSciNet  Google Scholar 

  59. Bourjaily JL et al (2022) Functions beyond multiple polylogarithms for precision Collider Physics, 3, ar**v.org/abs/2203.07088

  60. Binoth T, Heinrich G (2000) An automatized algorithm to compute infrared divergent multiloop integrals. Nucl Phys B 585:741

    Article  ADS  MATH  Google Scholar 

  61. Borowka S, Heinrich G, Jones SP, Kerner M, Schlenk J, Zirke T (2015) SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop. Comput Phys Commun 196:470

    Article  ADS  MATH  Google Scholar 

  62. Borowka S, Heinrich G, Jahn S, Jones SP, Kerner M, Schlenk J (2019) A GPU compatible quasi-Monte Carlo integrator interfaced to pySecDec. Comput Phys Commun 240:120

    Article  ADS  Google Scholar 

  63. Smirnov AV, Shapurov ND, Vysotsky LI FIESTA5: numerical high-performance Feynman integral evaluation, ar**v.org/abs/2110.11660

  64. Borowka S, Greiner N, Heinrich G, Jones SP, Kerner M, Schlenk J et al (2016) Full top quark mass dependence in Higgs boson pair production at NLO. JHEP 10:107

    Article  ADS  Google Scholar 

  65. Jones SP, Kerner M, Luisoni G (2018) Next-to-leading-order QCD corrections to Higgs Boson plus jet production with full top-quark mass dependence. Phys Rev Lett 120:162001

    Article  ADS  Google Scholar 

  66. Chen L, Heinrich G, Jahn S, Jones SP, Kerner M, Schlenk J et al (2020) Photon pair production in gluon fusion: top quark effects at NLO with threshold matching. JHEP 04:115

    ADS  Google Scholar 

  67. Chen L, Heinrich G, Jones SP, Kerner M, Klappert J, Schlenk J (2021) \(ZH\) production in gluon fusion: two-loop amplitudes with full top quark mass dependence. JHEP 03:125

  68. von Manteuffel A, Panzer E, Schabinger RM (2015) A quasi-finite basis for multi-loop Feynman integrals. JHEP 02:120 [ar**v.org/abs/1411.7392]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. von Manteuffel A, Schabinger RM (2017) Numerical multi-loop calculations via finite integrals and one-mass EW-QCD Drell–Yan master integrals. JHEP 04:129

    Article  ADS  Google Scholar 

  70. Song Q, Freitas A (2021) On the evaluation of two-loop electroweak box diagrams for \(e^+e^- \rightarrow HZ\) production. JHEP 04:179

  71. Dubovyk I, Freitas A, Gluza J, Riemann T, Usovitsch J (2018) Complete electroweak two-loop corrections to Z boson production and decay. Phys Lett B 783:86

    Article  ADS  Google Scholar 

  72. Pozzorini S, Remiddi E (2006) Precise numerical evaluation of the two loop sunrise graph master integrals in the equal mass case. Comput Phys Commun 175:381

    Article  ADS  MATH  Google Scholar 

  73. Aglietti U, Bonciani R, Grassi L, Remiddi E (2008) The Two loop crossed ladder vertex diagram with two massive exchanges. Nucl Phys B 789:45

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Lee RN, Smirnov AV, Smirnov VA (2018) Solving differential equations for Feynman integrals by expansions near singular points. JHEP 03:008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Frellesvig H, Hidding M, Maestri L, Moriello F, Salvatori G (2020) The complete set of two-loop master integrals for Higgs + jet production in QCD, JHEP 06:093

  76. Heller M Planar two-loop integrals for \({\mu } {\mathbf{e}}\) scattering in QED with finite lepton masses

  77. Hidding M (2021) DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions. Comput Phys Commun 269

  78. Dubovyk I, Freitas A, Gluza J, Grzanka K, Hidding M, Usovitsch J Evaluation of multi-loop multi-scale Feynman integrals for precision physics

  79. Liu Z-F, Ma Y-Q Feynman integrals are completely determined by linear algebra, ar**v.org/abs/2201.11637

  80. Liu X, Ma Y-Q, Wang C-Y (2018) A systematic and efficient method to compute multi-loop master integrals. Phys Lett B 779:353

    Article  ADS  MathSciNet  Google Scholar 

  81. Liu X, Ma Y-Q, Tao W, Zhang P (2021) Calculation of Feynman loop integration and phase-space integration via auxiliary mass flow. Chin Phys C 45:013115

    Article  ADS  Google Scholar 

  82. Liu X, Ma Y-Q Multiloop corrections for collider processes using auxiliary mass flow, ar**v.org/abs/2107.01864

  83. Liu X, Ma Y-Q AMFlow: a Mathematica package for Feynman integrals computation via Auxiliary Mass Flow, ar**v.org/abs/2201.11669

  84. Bevilacqua G, Czakon M, Garzelli MV, van Hameren A, Kardos A, Papadopoulos CG et al (2013) HELAC-NLO. Comput Phys Commun 184:986

    Article  ADS  Google Scholar 

  85. Alwall J, Frederix R, Frixione S, Hirschi V, Maltoni F, Mattelaer O et al (2014) The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07:079

  86. Frederix R, Frixione S, Hirschi V, Pagani D, Shao HS, Zaro M (2018) The automation of next-to-leading order electroweak calculations. JHEP 07:185

    Article  ADS  Google Scholar 

  87. Figueroa D, Quackenbush S, Reina L, Reuschle C (2022) Updates to the one-loop provider NLOX. Comput Phys Commun 270:108150

    Article  Google Scholar 

  88. Buccioni F, Lang J-N, Lindert JM, Maierhöfer P, Pozzorini S, Zhang H et al (2019) OpenLoops 2. Eur Phys J C 79:866

    Article  ADS  Google Scholar 

  89. Denner A, Lang J-N, Uccirati S (2018) Recola2: REcursive computation of one-loop amplitudes 2. Comput Phys Commun 224:346

    Article  ADS  Google Scholar 

  90. Borowka S, Greiner N, Heinrich G, Jones SP, Kerner M, Schlenk J et al (2016) Higgs Boson pair production in gluon fusion at next-to-leading order with full top-quark mass dependence. Phys Rev Lett 117:012001

    Article  ADS  Google Scholar 

  91. Heller M, von Manteuffel A, Schabinger RM, Spiesberger H (2021) Mixed EW-QCD two-loop amplitudes for \(q\bar{q} \rightarrow \ell ^+\ell ^-\) and \(\gamma _5\) scheme independence of multi-loop corrections. JHEP 05:213

    Article  ADS  Google Scholar 

  92. Bonciani R, Buonocore L, Grazzini M, Kallweit S, Rana N, Tramontano F et al (2022) Mixed strong-electroweak corrections to the Drell–Yan process. Phys Rev Lett 128:012002

    Article  ADS  Google Scholar 

  93. Becchetti M, Moriello F, Schweitzer A Two-loop amplitude for mixed QCD-EW corrections to \(gg \rightarrow Hg\), ar**v.org/abs/2112.07578

  94. Badger S, Brønnum-Hansen C, Hartanto HB, Peraro T (2019) Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case. JHEP 01:186

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Abreu S, Dormans J, Febres Cordero F, Ita H, Page B (2019) Analytic form of planar two-loop five-gluon scattering amplitudes in QCD. Phys Rev Lett 122

  96. Abreu S, Dormans J, Febres Cordero F, Ita H, Page B, Sotnikov V (2019) Analytic form of the planar two-loop five-Parton scattering amplitudes in QCD. JHEP 05:084

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. Badger S, Chicherin D, Gehrmann T, Heinrich G, Henn JM, Peraro T et al (2019) Analytic form of the full two-loop five-gluon all-plus helicity amplitude. Phys Rev Lett 123:071601

    Article  ADS  Google Scholar 

  98. Abreu S, Page B, Pascual E, Sotnikov V (2021) Leading-color two-loop QCD corrections for three-photon production at Hadron colliders. JHEP 01:078

    Article  ADS  Google Scholar 

  99. Chawdhry HA, Czakon M, Mitov A, Poncelet R (2021) Two-loop leading-color helicity amplitudes for three-photon production at the LHC. JHEP 06:150

    Article  ADS  Google Scholar 

  100. Agarwal B, Buccioni F, von Manteuffel A, Tancredi L (2021) Two-loop leading colour QCD corrections to \(q \bar{q} \rightarrow \gamma \gamma g\) and \(q g \rightarrow \gamma \gamma q\). JHEP 04:201

    Article  ADS  Google Scholar 

  101. Abreu S, Febres Cordero F, Ita H, Page B, Sotnikov V (2021) Leading-color two-loop QCD corrections for three-jet production at hadron colliders. JHEP 07:095

    Article  ADS  Google Scholar 

  102. Chawdhry HA, Czakon M, Mitov A, Poncelet R (2021) Two-loop leading-colour QCD helicity amplitudes for two-photon plus jet production at the LHC. JHEP 07:164

    Article  ADS  Google Scholar 

  103. Agarwal B, Buccioni F, von Manteuffel A, Tancredi L (2021) Two-loop helicity amplitudes for Diphoton plus jet production in full color. Phys Rev Lett 127

  104. Badger S, Hartanto HB, Kryś J, Zoia S (2021) Two-loop leading-colour QCD helicity amplitudes for Higgs boson production in association with a bottom-quark pair at the LHC. JHEP 11:012

    Article  ADS  Google Scholar 

  105. Abreu S, Febres Cordero F, Ita H, Klinkert M, Page B, Sotnikov V Leading-color two-loop amplitudes for four Partons and a W Boson in QCD, ar**v.org/abs/2110.07541

  106. Badger S, Hartanto HB, Kryś J, Zoia S Two-loop leading colour helicity amplitudes for \(W^\pm \gamma +j\) production at the LHC, ar**v.org/abs/2201.04075

  107. Henn J, Smirnov AV, Smirnov VA, Steinhauser M (2017) Massive three-loop form factor in the planar limit. JHEP 01:074

    Article  ADS  MATH  Google Scholar 

  108. Lee RN, Smirnov AV, Smirnov VA, Steinhauser M (2018) Three-loop massive form factors: complete light-fermion corrections for the vector current. JHEP 03:136

    Article  ADS  MathSciNet  Google Scholar 

  109. Ablinger J, Blümlein J, Marquard P, Rana N, Schneider C (2018) Heavy quark form factors at three loops in the planar limit. Phys Lett B 782:528

    Article  ADS  Google Scholar 

  110. Blümlein J, Marquard P, Rana N, Schneider C (2019) The heavy Fermion contributions to the massive three loop form factors. Nucl Phys B 949

  111. Czakon M, Harlander RV, Klappert J, Niggetiedt M (2021) Exact top-quark mass dependence in hadronic Higgs production. Phys Rev Lett 127:162002

    Article  ADS  Google Scholar 

  112. Fael M, Lange F, Schönwald K, Steinhauser M Massive vector form factors to three loops, ar**v.org/abs/2202.05276

  113. Caola F, von Manteuffel A, Tancredi L (2021) Diphoton amplitudes in three-loop quantum chromodynamics. Phys Rev Lett 126:112004

    Article  ADS  MathSciNet  Google Scholar 

  114. Caola F, Chakraborty A, Gambuti G, von Manteuffel A, Tancredi L (2021) Three-loop helicity amplitudes for four-quark scattering in massless QCD. JHEP 10:206

    Article  ADS  Google Scholar 

  115. Bargiela P, Caola F, von Manteuffel A, Tancredi L (2022) Three-loop helicity amplitudes for diphoton production in gluon fusion. JHEP 02:153

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. Caola F, Chakraborty A, Gambuti G, von Manteuffel A, Tancredi L Three-loop gluon scattering in QCD and the gluon Regge trajectory, ar**v.org/abs/2112.11097

  117. Chakraborty A, Huber T, Lee RN, von Manteuffel A, Schabinger RM, Smirnov AV et al The \(Hb{\bar{b}}\) vertex at four loops and hard matching coefficients in SCET for various currents, ar**v.org/abs/2204.02422

  118. Baikov PA, Chetyrkin KG, Kühn JH (2017) Five-Loop Running of the QCD coupling constant. Phys Rev Lett 118:082002

    Article  ADS  Google Scholar 

  119. Herzog F, Ruijl B, Ueda T, Vermaseren JAM, Vogt A (2017) The five-loop beta function of Yang–Mills theory with fermions. JHEP 02:090

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. Luthe T, Maier A, Marquard P, Schroder Y (2017) The five-loop Beta function for a general gauge group and anomalous dimensions beyond Feynman gauge. JHEP 10:166 [ar**v.org/abs/1709.07718]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. Moch S, Ruijl B, Ueda T, Vermaseren JAM, Vogt A (2017) Four-loop non-singlet splitting functions in the planar limit and beyond. JHEP 10:041

  122. Moch S, Ruijl B, Ueda T, Vermaseren JAM, Vogt A (2022) Low moments of the four-loop splitting functions in QCD. Phys Lett B 825:136853 [ar**v.org/abs/2111.15561]

    Article  MathSciNet  MATH  Google Scholar 

  123. Chetyrkin KG, Tkachov FV (1981) Integration by parts: the algorithm to calculate beta functions in 4 loops. Nucl Phys B 192:159

    Article  ADS  Google Scholar 

  124. Peraro T, Tancredi L (2019) Physical projectors for multi-leg helicity amplitudes. JHEP 07:114

    Article  ADS  MathSciNet  Google Scholar 

  125. Peraro T, Tancredi L (2021) Tensor decomposition for bosonic and fermionic scattering amplitudes. Phys Rev D 103:054042

    Article  ADS  MathSciNet  Google Scholar 

  126. Chen L (2021) A prescription for projectors to compute helicity amplitudes in D dimensions. Eur Phys J C 81:417

    Article  ADS  Google Scholar 

  127. Mastrolia P, Ossola G (2011) On the integrand-reduction method for two-loop scattering amplitudes. JHEP 11:014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  128. Badger S, Frellesvig H, Zhang Y (2012) Hepta-cuts of two-loop scattering amplitudes. JHEP 04:055

    Article  ADS  MathSciNet  MATH  Google Scholar 

  129. Zhang Y (2012) Integrand-level reduction of loop amplitudes by computational algebraic geometry methods. JHEP 09:042

    Article  ADS  MathSciNet  Google Scholar 

  130. Mastrolia P, Peraro T, Primo A (2016) Adaptive integrand decomposition in parallel and orthogonal space. JHEP 08:164

    Article  ADS  MathSciNet  MATH  Google Scholar 

  131. del Aguila F, Pittau R (2004) Recursive numerical calculus of one-loop tensor integrals. JHEP 07:017

    Article  MathSciNet  Google Scholar 

  132. Ossola G, Papadopoulos CG, Pittau R (2007) Reducing full one-loop amplitudes to scalar integrals at the integrand level. Nucl Phys B 763:147

    Article  ADS  MathSciNet  MATH  Google Scholar 

  133. Ossola G, Papadopoulos CG, Pittau R (2007) Numerical evaluation of six-photon amplitudes. JHEP 07:085

    Article  ADS  Google Scholar 

  134. Ita H (2016) Two-loop integrand decomposition into master integrals and surface terms. Phys Rev D 94:116015

    Article  ADS  MathSciNet  Google Scholar 

  135. Ellis RK, Giele WT, Kunszt Z (2008) A numerical unitarity formalism for evaluating one-loop amplitudes. JHEP 03:003

    Article  ADS  MathSciNet  Google Scholar 

  136. Giele WT, Kunszt Z, Melnikov K (2008) Full one-loop amplitudes from tree amplitudes. JHEP 04:049

    Article  ADS  MathSciNet  MATH  Google Scholar 

  137. Berger CF, Bern Z, Dixon LJ, Febres Cordero F, Forde D, Ita H et al (2008) An automated implementation of on-shell methods for one-loop amplitudes. Phys Rev D 78:036003

    Article  ADS  Google Scholar 

  138. Abreu S, Febres Cordero F, Ita H, Jaquier M, Page B, Zeng M (2017) Two-loop four-Gluon amplitudes from numerical unitarity. Phys Rev Lett 119:142001

    Article  ADS  Google Scholar 

  139. Abreu S, Febres Cordero F, Ita H, Jaquier M, Page B (2017) Subleading poles in the numerical unitarity method at two loops. Phys Rev D 95:096011

    Article  ADS  MathSciNet  Google Scholar 

  140. Abreu S, Febres Cordero F, Ita H, Page B, Zeng M (2018) Planar two-loop five-Gluon amplitudes from numerical unitarity. Phys Rev D 97:116014

    Article  ADS  Google Scholar 

  141. Abreu S, Febres Cordero F, Ita H, Page B, Sotnikov V (2018) Planar two-loop five-Parton amplitudes from numerical unitarity. JHEP 11:116

    Article  ADS  MathSciNet  MATH  Google Scholar 

  142. Pozzorini S, Zhang H, Zoller MF (2020) Rational terms of UV origin at two loops. JHEP 05:077

    Article  ADS  MathSciNet  Google Scholar 

  143. Lang J-N, Pozzorini S, Zhang H, Zoller MF (2020) Two-loop rational terms in Yang–Mills theories. JHEP 10:016

    Article  ADS  MathSciNet  Google Scholar 

  144. Lang J-N, Pozzorini S, Zhang H, Zoller MF (2022) Two-loop rational terms for spontaneously broken theories. JHEP 01:105

    Article  ADS  MathSciNet  MATH  Google Scholar 

  145. Pozzorini S, Schär N, Zoller MF Two-loop tensor integral coefficients in OpenLoops, ar**v.org/abs/2201.11615

  146. Laporta S (2000) High precision calculation of multiloop Feynman integrals by difference equations. Int J Mod Phys A 15:5087

    Article  ADS  MathSciNet  MATH  Google Scholar 

  147. Smirnov AV, Chuharev FS (2020) FIRE6: Feynman Integral REduction with modular arithmetic. Comput Phys Commun 247:106877

    Article  Google Scholar 

  148. von Manteuffel A, Studerus C Reduze 2—distributed Feynman integral reduction, ar**v.org/abs/1201.4330

  149. Lee RN (2014) LiteRed 1.4: a powerful tool for reduction of multiloop integrals. J Phys Conf Ser 523:012059

  150. Klappert J, Lange F, Maierhöfer P, Usovitsch J (2021) Integral reduction with Kira 2.0 and finite field methods. Comput Phys Commun 266:108024

  151. Gluza J, Kajda K, Kosower DA (2011) Towards a basis for planar two-loop integrals. Phys Rev D 83:045012

    Article  ADS  Google Scholar 

  152. Larsen KJ, Zhang Y (2016) Integration-by-parts reductions from unitarity cuts and algebraic geometry. Phys Rev D 93:041701

    Article  ADS  MathSciNet  Google Scholar 

  153. Georgoudis A, Larsen KJ, Zhang Y (2017) Azurite: An algebraic geometry based package for finding bases of loop integrals. Comput Phys Commun 221:203 [ar**v.org/abs/1612.04252]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  154. Böhm J, Georgoudis A, Larsen KJ, Schulze M, Zhang Y (2018) Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals. Phys Rev D 98

  155. Lee RN (2014) Modern techniques of multiloop calculations. In: 49th Rencontres de Moriond on QCD and high energy interactions, pp 297–300, ar**v.org/abs/1405.5616

  156. Bitoun T, Bogner C, Klausen RP, Panzer E (2019) Feynman integral relations from parametric annihilators. Lett Math Phys 109:497 [ar**v.org/abs/1712.09215]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  157. Smirnov A, Smirnov V How to choose master integrals, ar**v.org/abs/2002.08042

  158. Usovitsch J Factorization of denominators in integration-by-parts reductions, ar**v.org/abs/2002.08173

  159. Mastrolia P, Mizera S (2019) Feynman integrals and intersection theory. JHEP 02:139 [ar**v.org/abs/1810.03818]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  160. Frellesvig H, Gasparotto F, Laporta S, Mandal MK, Mastrolia P, Mattiazzi L et al (2019) Decomposition of Feynman integrals on the maximal cut by intersection numbers. JHEP 05:153

    Article  ADS  MathSciNet  MATH  Google Scholar 

  161. von Manteuffel A, Schabinger RM (2015) A novel approach to integration by parts reduction. Phys Lett B 744:101

    Article  ADS  MathSciNet  MATH  Google Scholar 

  162. Peraro T (2016) Scattering amplitudes over finite fields and multivariate functional reconstruction. JHEP 12:030

    Article  ADS  MathSciNet  MATH  Google Scholar 

  163. Klappert J, Lange F (2020) Reconstructing rational functions with FireFly. Comput Phys Commun 247:106951

    Article  Google Scholar 

  164. Peraro T (2019) FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs. JHEP 07:031

    Article  ADS  MathSciNet  Google Scholar 

  165. Abreu S, Dormans J, Febres Cordero F, Ita H, Kraus M, Page B et al (2021) Caravel: A C++ framework for the computation of multi-loop amplitudes with numerical unitarity. Comput Phys Commun 267:108069

  166. Laurentis G, Maître D (2019) Extracting analytical one-loop amplitudes from numerical evaluations. JHEP 07:123

    Article  ADS  MathSciNet  MATH  Google Scholar 

  167. Budge L, Campbell JM, De Laurentis G, Ellis RK, Seth S (2020) The one-loop amplitudes for Higgs + 4 partons with full mass effects. JHEP 05:079

    Article  ADS  MathSciNet  Google Scholar 

  168. Campbell JM, De Laurentis G, Ellis RK, Seth S (2021) The pp \(\rightarrow {}\) W(\(\rightarrow {}\) l\(\nu\)) + \(\gamma\) process at next-to-next-to-leading order. JHEP 07:079

    Article  ADS  Google Scholar 

  169. Campbell JM, De Laurentis G, Ellis RK Vector boson pair production at one loop: analytic results for the process \(q \bar{q} \ell \bar{\ell }\ell ^\prime \bar{\ell }^\prime g\), ar**v.org/abs/2203.17170

  170. De Laurentis G, Page B Ansätze for scattering amplitudes from \(p\)-adic numbers and algebraic geometry, ar**v.org/abs/2203.04269

  171. Pak A (2012) The Toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques. J Phys: Conf Ser 368:012049

    Google Scholar 

  172. Raichev A Leĭnartas’ partial fraction decomposition, ar**v.org/abs/1206.4740

  173. Bendle D, Böhm J, Decker W, Georgoudis A, Pfreundt F-J, Rahn M et al (2020) Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space. JHEP 02:079

    Article  ADS  MathSciNet  MATH  Google Scholar 

  174. Heller M, von Manteuffel A (2022) MultivariateApart: generalized partial fractions. Comput Phys Commun 271 [ar**v.org/abs/2101.08283]

  175. Chen X, Gehrmann T, Glover EW N, Huss A, Monni P, Re E et al Third order fiducial predictions for Drell–Yan at the LHC, ar**v.org/abs/2203.01565

  176. Cacciari M, Dreyer FA, Karlberg A, Salam GP, Zanderighi G (2015) Fully differential Vector-Boson-Fusion Higgs production at next-to-next-to-leading order. Phys Rev Lett 115:082002

    Article  ADS  Google Scholar 

  177. Catani S, Grazzini M (2007) An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC. Phys Rev Lett 98:222002

    Article  ADS  Google Scholar 

  178. Becher T, Neubert M (2011) Drell–Yan Production at Small \(q_T\), transverse Parton distributions and the collinear anomaly. Eur Phys J C 71:1665

    Article  ADS  Google Scholar 

  179. Billis G, Ebert MA, Michel JKL, Tackmann FJ (2021) A toolbox for \(q_{T}\) and 0-jettiness subtractions at \(\text{ N}^3\text{ LO }\). Eur Phys J Plus 136:214

    Article  Google Scholar 

  180. Stewart IW, Tackmann FJ, Waalewijn WJ (2010) N-jettiness: an inclusive event shape to veto jets. Phys Rev Lett 105:092002

    Article  ADS  Google Scholar 

  181. Boughezal R, Focke C, Liu X, Petriello F (2015) \(W\)-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD. Phys Rev Lett 115:062002

    Article  ADS  Google Scholar 

  182. Gaunt J, Stahlhofen M, Tackmann FJ, Walsh JR (2015) N-jettiness subtractions for NNLO QCD calculations. JHEP 09:058

    Article  Google Scholar 

  183. Li Y, Zhu HX (2017) Bootstrap** rapidity anomalous dimensions for transverse-momentum resummation. Phys Rev Lett 118:022004

    Article  ADS  Google Scholar 

  184. Vladimirov AA (2017) Correspondence between soft and rapidity anomalous dimensions. Phys Rev Lett 118:062001

    Article  ADS  Google Scholar 

  185. Luo M-x, Yang T-Z, Zhu HX, Zhu YJ (2021) Unpolarized quark and gluon TMD PDFs and FFs at N\(^{3}\)LO. JHEP 06:115

    ADS  MathSciNet  Google Scholar 

  186. Ebert MA, Mistlberger B, Vita G (2020) Transverse momentum dependent PDFs at N\(^3\)LO. JHEP 09:146

    Article  ADS  MathSciNet  Google Scholar 

  187. Caola F, Chen W, Duhr C, Liu X, Mistlberger B, Petriello F et al (2022) The path forward to N\(^3\)LO. In: 2022 snowmass summer study, 3, ar**v.org/abs/2203.06730

  188. Moult I, Rothen L, Stewart IW, Tackmann FJ, Zhu HX (2017) Subleading Power Corrections for N-Jettiness Subtractions. Phys Rev D 95:074023

    Article  ADS  Google Scholar 

  189. Boughezal R, Isgrò A, Petriello F (2018) Next-to-leading-logarithmic power corrections for \(N\)-jettiness subtraction in color-singlet production. Phys Rev D 97:076006

    Article  ADS  Google Scholar 

  190. Ebert MA, Moult I, Stewart IW, Tackmann FJ, Vita G, Zhu HX (2019) Subleading power rapidity divergences and power corrections for q\(_{T}\). JHEP 04:123

    Article  ADS  MathSciNet  Google Scholar 

  191. Herzog F (2018) Geometric IR subtraction for final state real radiation. JHEP 08:006

    Article  ADS  MathSciNet  Google Scholar 

  192. Gehrmann-De Ridder A, Gehrmann T, Glover EWN (2005) Antenna subtraction at NNLO. JHEP 09:056

    Article  ADS  Google Scholar 

  193. Currie J, Glover EWN, Wells S (2013) Infrared structure at NNLO using antenna subtraction. JHEP 04:066

    Article  ADS  Google Scholar 

  194. Czakon M (2010) A novel subtraction scheme for double-real radiation at NNLO. Phys Lett B 693:259

    Article  ADS  Google Scholar 

  195. Boughezal R, Melnikov K, Petriello F (2012) A subtraction scheme for NNLO computations. Phys Rev D 85:034025

    Article  ADS  Google Scholar 

  196. Czakon M, Heymes D (2014) Four-dimensional formulation of the sector-improved residue subtraction scheme. Nucl Phys B 890:152

    Article  ADS  MathSciNet  MATH  Google Scholar 

  197. Currie J, Gehrmann-De Ridder A, Gehrmann T, Glover EWN, Huss A, Pires J (2017) Precise predictions for dijet production at the LHC. Phys Rev Lett 119:152001

    Article  ADS  Google Scholar 

  198. Gehrmann-De Ridder A, Gehrmann T, Glover EWN, Huss A, Pires J (2019) Triple differential Dijet cross section at the LHC. Phys Rev Lett 123:102001

    Article  ADS  Google Scholar 

  199. Czakon M, van Hameren A, Mitov A, Poncelet R (2019) Single-jet inclusive rates with exact color at \(\cal{O}\) (\({\alpha }_s^4\)). JHEP 10:262

    Article  ADS  Google Scholar 

  200. Czakon M, Mitov A, Poncelet R (2021) Next-to-next-to-leading order study of three-jet production at the LHC. Phys Rev Lett 127:152001

    Article  ADS  Google Scholar 

  201. Chen X, Gehrmann T, Glover N, Huss A, Marcoli M Automation of antenna subtraction in colour space: gluonic processes, ar**v.org/abs/2203.13531

  202. Caola F, Melnikov K, Röntsch R (2017) Nested soft-collinear subtractions in NNLO QCD computations. Eur Phys J C 77:248

    Article  ADS  Google Scholar 

  203. Asteriadis K, Caola F, Melnikov K, Röntsch R (2020) Analytic results for deep-inelastic scattering at NNLO QCD with the nested soft-collinear subtraction scheme. Eur Phys J C 80:8

    Article  ADS  Google Scholar 

  204. Asteriadis K, Caola F, Melnikov K, Röntsch R (2022) NNLO QCD corrections to weak boson fusion Higgs boson production in the H \(\rightarrow {}\) b\(\overline{b}\) and H \(\rightarrow {}\) WW\(^{*}\)\(\rightarrow {}\) 4l decay channels. JHEP 02:046

  205. Buccioni F, Caola F, Chawdhry HA, Devoto F, Heller M, von Manteuffel A et al Mixed QCD-electroweak corrections to dilepton production at the LHC in the high invariant mass region, ar**v.org/abs/2203.11237

  206. Somogyi G, Trocsanyi Z, Del Duca V (2005) Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements. JHEP 06:024

    Article  ADS  Google Scholar 

  207. Del Duca V, Duhr C, Kardos A, Somogyi G, Szőr Z, Trócsányi Z et al (2016) Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions. Phys Rev D 94:074019

    Article  ADS  Google Scholar 

  208. Del Duca V, Duhr C, Somogyi G, Tramontano F, Trócsányi Z (2015) Higgs boson decay into b-quarks at NNLO accuracy. JHEP 04:036

    Article  ADS  Google Scholar 

  209. Magnea L, Maina E, Pelliccioli G, Signorile-Signorile C, Torrielli P, Uccirati S (2018) Local analytic sector subtraction at NNLO. JHEP 12:107

    Article  ADS  Google Scholar 

  210. Heinrich G (2021) Collider physics at the precision frontier. Phys Rep 922:1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  211. Chen X, Gehrmann T, Glover EWN, Huss A, Mistlberger B, Pelloni A (2021) Fully differential Higgs Boson production to third order in QCD. Phys Rev Lett 127:072002

  212. Billis G, Dehnadi B, Ebert MA, Michel JKL, Tackmann FJ (2021) Higgs pT spectrum and total cross section with fiducial cuts at third resummed and fixed order in QCD. Phys Rev Lett 127:072001 [ar**v.org/abs/2102.08039]

  213. Chawdhry HA, Czakon ML, Mitov A, Poncelet R (2020) NNLO QCD corrections to three-photon production at the LHC. JHEP 02:057

    Article  ADS  Google Scholar 

  214. Kallweit S, Sotnikov V, Wiesemann M (2021) Triphoton production at hadron colliders in NNLO QCD. Phys Lett B 812:136013

  215. Chawdhry HA, Czakon M, Mitov A, Poncelet R (2021) NNLO QCD corrections to diphoton production with an additional jet at the LHC. JHEP 09:093

  216. Badger S, Gehrmann T, Marcoli M, Moodie R (2022) Next-to-leading order QCD corrections to diphoton-plus-jet production through gluon fusion at the LHC. Phys Lett B 824:136802

    Article  Google Scholar 

  217. Badger S, Brønnum-Hansen C, Chicherin D, Gehrmann T, Hartanto HB, Henn J et al (2021) Virtual QCD corrections to gluon-initiated diphoton plus jet production at hadron colliders. JHEP 11:083

    Article  ADS  Google Scholar 

  218. Pellen M, Poncelet R, Popescu A (2022) Polarised W+j production at the LHC: a study at NNLO QCD accuracy. JHEP 02:160

    Article  ADS  Google Scholar 

  219. Czakon M, Mitov A, Poncelet R (2021) NNLO QCD corrections to leptonic observables in top-quark pair production and decay. JHEP 05:212

    Article  ADS  Google Scholar 

  220. Czakon ML, Generet T, Mitov A, Poncelet R (2021) B-hadron production in NNLO QCD: application to LHC t\(\overline{t}\) events with leptonic decays. JHEP 10:216

    Article  ADS  Google Scholar 

  221. Alekhin S, Kardos A, Moch S, Trócsányi Z (2021) Precision studies for Drell–Yan processes at NNLO. Eur Phys J C 81:573

    Article  ADS  Google Scholar 

  222. Behring A, Buccioni F, Caola F, Delto M, Jaquier M, Melnikov K et al (2021) Mixed QCD-electroweak corrections to \(W\)-boson production in hadron collisions. Phys Rev D 103:013008

    Article  ADS  Google Scholar 

  223. Bevilacqua G, Bi H-Y, Hartanto HB, Kraus M, Lupattelli M, Worek M (2021) \(t\bar{t}b\bar{b}\) at the LHC: on the size of corrections and b-jet definitions. JHEP 08:008

    Article  ADS  Google Scholar 

  224. Bevilacqua G, Bi H-Y, Hartanto HB, Kraus M, Lupattelli M, Worek M \(t\bar{t}b\bar{b}\) at the LHC: on the size of off-shell effects and prompt \(b\)-jet identification, ar**v.org/abs/2202.11186

  225. Denner A, Lang J-N, Pellen M (2021) Full NLO QCD corrections to off-shell tt\(^-\)bb\(^-\) production. Phys Rev D 104:056018

    Article  ADS  Google Scholar 

  226. Campbell JM et al (2022) Event generators for high-energy physics experiments. In: 2022 snowmass summer study, 3 ar**v.org/abs/2203.11110

  227. Mazzitelli J, Monni PF, Nason P, Re E, Wiesemann M, Zanderighi G (2021) Next-to-next-to-leading order event generation for top-quark pair production. Phys Rev Lett 127:062001

    Article  ADS  MathSciNet  Google Scholar 

  228. Mazzitelli J, Monni PF, Nason P, Re E, Wiesemann M, Zanderighi G Top-pair production at the LHC with MiNNLO\(_{\rm PS}\), ar**v.org/abs/2112.12135

  229. Lombardi D, Wiesemann M, Zanderighi G (2021) Advancing MıNNLO\(_{PS}\) to diboson processes: Z\(\gamma\) production at NNLO+PS. JHEP 06:095

    Article  ADS  Google Scholar 

  230. Cridge T, Lim MA, Nagar R (2022) W\(\gamma\) production at NNLO+PS accuracy in Geneva. Phys Lett B 826:136918

    Article  Google Scholar 

  231. Alioli S, Broggio A, Gavardi A, Kallweit S, Lim MA, Nagar R et al (2021) Next-to-next-to-leading order event generation for \(Z\) boson pair production matched to Parton shower. Phys Lett B 818

  232. Butter A et al (2022) Machine learning and LHC event generation. In: 2022 Snowmass summer study, 3, ar**v.org/abs/2203.07460

Download references

Acknowledgements

We would like to thank the following people for filling out our survey and providing valuable input on the computational resources of their projects: Samuel Abreu, Bakul Agarwal, Konstantin Asteriadis, Simon Badger, Matteo Becchetti, Marco Bonetti, Federico Buccioni, Luca Buonocore, Fabrizio Caola, Gudrun Heinrich, Alexander Huss, Stephen P. Jones, Stefan Kallweit, Matthias Kerner, Matteo Marcoli, Javier Mazzitelli, Johannes Michel, Sven Moch, Marco Niggetiedt, Costas Papadopoulos, Mathieu Pellen, Rene Poncelet, Jérémie Quarroz, Luca Rottoli, Gabor Somogyi, Qian Song, Vasily Sotnikov, Matthias Steinhauser, Gherardo Vita, Chen-Yu Wang, Stefan Weinzierl, Marius Wiesemann, Malgorzata Worek, Tongzhi Yang and YuJiao Zhu.

Author information

Authors and Affiliations

Authors

Contributions

The work of Fernando Febres Cordero is supported in part by the United States Department of Energy under grant DE-SC0010102. Andreas von Manteuffel is supported in part by the National Science Foundation under Grant 2013859. Tobias Neumann is supported by the United States Department of Energy under Grant Contract DE-SC0012704.

Corresponding author

Correspondence to Tobias Neumann.

Ethics declarations

Conflict of Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordero, F.F., von Manteuffel, A. & Neumann, T. Computational Challenges for Multi-loop Collider Phenomenology. Comput Softw Big Sci 6, 14 (2022). https://doi.org/10.1007/s41781-022-00088-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41781-022-00088-0

Keywords

Navigation