Log in

Abstract

We study a model of branching random walks on simplicial complexes, which can be seen as a natural generalization of random walks on graphs. Exploiting the fact that each of its particles is distributed like the \((d-1)\)-walk introduced in Parzanchevski and Rosenthal (Random Struct Algorithms 50(2):225–261, 2017), we show the model is connected to the spectral and topological properties of the complex. The branching model is then used in order to calculate the spectral measure of the upper Laplacian associated with high-dimensional analogues of regular trees, thus obtaining a Kesten–McKay type distribution in arbitrary dimensions. Finally, we use the branching model in order to construct solutions to the Dirichlet problem on simplicial complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. One can avoid the use of analytic continuation by working with the p-lazy SBRW for any \(p>\frac{d-1}{d+1}\).

References

  • Cartwright, D.I., Solé, P., Żuk, A.: Ramanujan geometries of type \(a_n\). Discrete Math. 269(1–3), 35–43 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Dotterrer, D., Kahle, M.: Coboundary expanders. J. Topol. Anal. 4(4), 499–514 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Duval, A.M., Klivans, C.J., Martin, J.L.: Simplicial matrix-tree theorems. Trans. Am. Math. Soc. 361(11), 6073–6114 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Eckmann, B.: Harmonische Funktionen und Randwertaufgaben in einem Komplex. Comment. Math. Helv. 17, 240–255 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  • Evra, S., Golubev, K., Lubotzky, A.: Mixing properties and the chromatic number of Ramanujan complexes. Int. Math. Res. Not. 2015(22), 11520–11548 (2015)

    MathSciNet  MATH  Google Scholar 

  • Fox, J., Gromov, M., Lafforgue, V., Naor, A., Pach, J.: Overlap properties of geometric expanders. J. Reine Angew. Math. 671, 49–83 (2012)

    MathSciNet  MATH  Google Scholar 

  • Golubev, K., Parzanchevski, O.: Spectrum and combinatorics of two-dimensional Ramanujan complexes. Israel J. Math. 230(2), 583–612 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Gromov, M.: Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry. Geom. Funct. Anal. 20(2), 416–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Gundert, A., Szedlák, M.: Higher dimensional Cheeger inequalities. In: Annual Symposium on Computational Geometry, p. 181. ACM (2014)

  • Gundert, A., Wagner, U.: On eigenvalues of random complexes. Israel J. Math. 216(2), 545–582 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  • Hoffman, C., Kahle, M., Paquette, E.: The threshold for integer homology in random d-complexes. Discrete Comput. Geom. 57(4), 810–823 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffman, C., Kahle, M., Paquette, E.: Spectral gaps of random graphs and applications. Int. Math. Res. Not. 2021(11), 8353–8404 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Horak, D., Jost, J.: Spectra of combinatorial Laplace operators on simplicial complexes. Adv. Math. 244, 303–336 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalai, G.: Enumeration of \({ {Q}}\)-acyclic simplicial complexes. Israel J. Math. 45(4), 337–351 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Kaufman, T., Kazhdan, D., Lubotzky, A.: Isoperimetric inequalities for Ramanujan complexes and topological expanders. Geom. Funct. Anal. 26(1), 250–287 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Kesten, H.: Symmetric random walks on groups. Trans. Am. Math. Soc. 92, 336–354 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Kozlov, D.N.: The threshold function for vanishing of the top homology group of random \(d\)-complexes. Proc. Am. Math. Soc. 138(12), 4517–4527 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, W.C.W.: Ramanujan hypergraphs. Geom. Funct. Anal. 14(2), 380–399 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Linial, N., Peled, Y.: On the phase transition in random simplicial complexes. Ann. Math. 745–773 (2016)

  • Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Lubotzky, A., Samuels, B., Vishne, U.: Ramanujan complexes of type \(A_d\). Israel J. Math. 149:267–299 (2005). Probability in mathematics

  • Lubotzky, A., Meshulam, R.: Random Latin squares and 2-dimensional expanders. Adv. Math. 272, 743–760 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Lubotzky, A., Luria, Z., Rosenthal, R.: Random Steiner systems and bounded degree coboundary expanders of every dimension. Discrete Comput. Geom. 62(4), 813–831 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Matoušek, J., Wagner, U.: On Gromov’s method of selecting heavily covered points. Discrete Comput. Geom. 52(1), 1–33 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Meshulam, R., Wallach, N.: Homological connectivity of random \(k\)-dimensional complexes. Random Struct. Algorithms 34(3), 408–417 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Mukherjee, S., Steenbergen, J.: Random walks on simplicial complexes and harmonics. Random Struct Algorithms 49(2), 379–405 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Parzanchevski, O., Rosenthal, R., Tessler, R. J.: Isoperimetric inequalities in simplicial complexes. Combinatorica 36(2), 195–227 (2016)

  • Parzanchevski, O.: Mixing in high-dimensional expanders. Comb. Probab. Comput. 26(5), 746–761 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Parzanchevski, O., Rosenthal, R.: Simplicial complexes: spectrum, homology and random walks. Random Struct. Algorithms 50(2), 225–261 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Spitzer, F.: Principles of Random Walk, Graduate Texts in Mathematics, vol. 34, 2nd edn. Springer, New York (1976)

  • Steenbergen, J., Klivans, C., Mukherjee, S.: A Cheeger-type inequality on simplicial complexes. Adv. Appl. Math. 56, 56–77 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Wagner, U.: Minors in random and expanding hypergraphs. In: Computational Geometry (SCG’11), pp. 351–360. ACM, New York (2011)

Download references

Acknowledgements

This research has been partially supported by an ETH fellowship. The author would like to thank Mayra Bermúdez, Adrien Kassel, **nyi Li and Pierre-François Rodriguez for some useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Rosenthal.

Ethics declarations

conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Claim 2.3

For every \(f\in \Omega _{L^{2}}^{k}\),

$$\begin{aligned} \begin{aligned} \Vert \delta _{k}f\Vert ^{2}&=\sum _{\tau \in X^{k}}w(\tau )|\delta _{k}f(\tau )|^{2} \le \sum _{\tau \in X^{k}}w(\tau )\cdot \left( {\begin{array}{c}k\\ 2\end{array}}\right) \sum _{i=0}^{k}|f(\tau \backslash \tau _{i})|^{2}\\&=\sum _{\sigma \in X^{k-1}}\left( {\begin{array}{c}k\\ 2\end{array}}\right) \cdot \Big (\sum _{\sigma \vartriangleleft \tau }w(\tau )\Big )|f(\sigma )|^{2} \le \left( {\begin{array}{c}k\\ 2\end{array}}\right) \cdot \Big (\sup _{\sigma \in X^{k-1}}\frac{1}{w(\sigma )}\sum _{\sigma \vartriangleleft \tau }w(\tau )\Big )\Vert f\Vert ^{2}, \end{aligned} \end{aligned}$$

which proves that (2.4) implies that \(\delta _{k}\) is bounded. As for the other direction for any \(\sigma \in X_{\pm }^{k-1}\) the function \(\mathbb {1}_{\sigma }\) satisfies \(\Vert w(\sigma )^{-1/2}\mathbb {1}_{\sigma }\Vert ^{2}=1\) and

$$\begin{aligned} \Vert \delta _{k}\mathbb {1}_{\sigma }\Vert ^{2} =\sum _{\tau \in X^{k}}w(\tau )|\delta _{k}(w(\sigma )^{-1/2} \mathbb {1}_{\sigma }(\tau ))|^{2}=\frac{1}{w(\sigma )}\sum _{\sigma \vartriangleleft \tau }w(\tau ). \end{aligned}$$

Thus, whenever (2.4) does not hold the operator \(\delta _{k}\) is not bounded.

If \(\deg (\sigma )<\infty \) for every \(\sigma \), then \(\partial _{k}g(\sigma )\) is a finite sum for every \(\sigma \in X_{\pm }^{d-1}\) and is thus well defined. If (2.4) holds, then for every \(g\in \Omega _{L^{2}}^{k}\)

$$\begin{aligned} \begin{aligned} \Vert \partial _{k}g\Vert ^{2}&=\sum _{\sigma \in X^{k-1}}\frac{1}{w(\sigma )}\Big |\sum _{\sigma \vartriangleleft v\sigma }w(v\sigma )g(v\sigma )\Big |^{2}\\&\le \sum _{\sigma \in X^{k-1}}\frac{1}{w(\sigma )}\Big (\sum _{\sigma \vartriangleleft \tau }w(\tau )\Big )\Big (\sum _{\sigma \vartriangleleft v\sigma }w(v\sigma )|g(v\sigma )|^{2}\Big )\\&\le \sup _{\sigma \in X^{k-1}}\Big (\frac{1}{w(\sigma )}\sum _{\sigma \vartriangleleft \tau }w(\tau )\Big )\cdot \Big (\sum _{\sigma \in X^{k-1}}\sum _{\sigma \vartriangleleft \tau }w(\tau )|g(\tau )|^{2}\Big )\\&=k\cdot \sup _{\sigma \in X^{k-1}}\Big (\frac{1}{w(\sigma )}\sum _{\sigma \vartriangleleft \tau }w(\tau )\Big )\cdot \Vert g\Vert ^{2}. \end{aligned} \end{aligned}$$

thus proving that \(\partial _k\) is a bounded operator whenever (2.4) holds. \(\square \)

Invertability of \(\Delta ^+_{X{\setminus } A}\)

The invertability of \(\Delta ^+_{X{\setminus } A}\) plays a crucial role in the proof of Theorem 5.1. Therefore, we wish to study it further and provide several simpler conditions which are either necessary or sufficient for its validity. We start with some simple observations.

Claim B.1

(Invertibility of \(\Delta _{X\backslash A}^{+}\)) Let X be a finite d-complex and \(\emptyset \ne A\subsetneq X^{d-1}\). Then, the following are equivalent:

  1. 1.

    \(\Delta _{X\backslash A}^{+}\) is invertible.

  2. 2.

    \(\ker \delta _{d}^{X\backslash A}=\ker \Delta _{X\backslash A}^{+}=\{0\}\).

  3. 3.

    For every \((d-1)\)-form \(f:(X^{d-1}\backslash A)_{\pm }\rightarrow \mathbb {R}\) which is not identically zero, the extension \({\tilde{f}}:X_{\pm }^{d-1}\rightarrow \mathbb {R}\) given by \({\tilde{f}}(\sigma )={\left\{ \begin{array}{ll} f(\sigma ) &{} \sigma \in (X^{d-1}\backslash A)_{\pm }\\ 0 &{} \sigma \in A_{\pm } \end{array}\right. }\) is not in \(\ker \delta _{d}=\ker \Delta ^{+}=Z^{d-1}\).

  4. 4.

    The relative homology \(H_{d}(X,A)\) (see Hatcher 2002, Section 2.1 for the definition) is trivial.

Proof

The equivalence of the first three conditions follows from:

$$\begin{aligned} \langle \Delta _{X\backslash A}^{+}f,f\rangle _{X\backslash A} =\langle \delta _{d}^{X\backslash A}f,\delta _{d}^{X\backslash A}f\rangle =\langle \delta _{d}{\tilde{f}},\delta _{d}{\tilde{f}}\rangle =\sum _{\tau \in X^{d}}\left( \sum _{i=0}^{d}f(\tau \backslash \tau _{i})\cdot {{\textbf {1}}}_{\tau \backslash \tau _{i}\notin A_{\pm }}\right) ^{2}, \end{aligned}$$

where \(\langle \cdot ,\cdot \rangle _{X\backslash A}\) is the inner product \(\langle \cdot ,\cdot \rangle \) restricted to \(X^{d-1}\backslash A\). As for the last claim, the equivalence between \(\ker \delta _{d}^{X\backslash A}=0\) and \(H_{d}(X,A)=0\) follows directly from the definition of the relative homology, see (Hatcher 2002, Section 2.1). \(\square \)

Using Claim B.1, we can identify several cases in which it is simpler to check the invertability of \(\Delta _{X\backslash A}^{+}\).

Definition B.2

Let X be a finite d-complex and \(\emptyset \ne A\subsetneq X^{d-1}\). The set A is called exhaustive for the complex X if there exists a finite sequence \(A=A_{0}\subsetneq A_{1}\subsetneq A_{2}\subsetneq \cdots \subsetneq A_{N}=X^{d-1}\) such that for every \(n\ge 1\) and \(\sigma \in A_{n},\) one can find \(\sigma \vartriangleleft \tau \) so that all faces of \(\tau \) besides \(\sigma \) are in \(A_{n-1}\).

If X is a d-complex and \(-1\le k\le d\), we define the k-skeleton of X to be \(X^{(k)} = \bigcup _{j=1}^k X^j\).

Definition B.3

(Duval et al. 2009Definition 3.1) Let X be a d-complex and \(k\le d\). A k-dimensional simplicial spanning tree (k-SST for short) of X is a k-dimensional subcomplex \(Y\subset X\) such that \(Y^{(k-1)}=X^{(k-1)}\), \(H_{k}(Y;\mathbb {Z})=0\) and \(|H_{k-1}(Y;\mathbb {Z})|<\infty \), where for \(l\ge 0\), \(H_{l}(Y;\mathbb {Z})\) is the l-homology groups of X with coefficients in \(\mathbb {Z}\) (see Hatcher 2002, Section 2.1) for further details).

Lemma B.4

Let X be a finite d-complex.

  1. 1.

    Assume \(d=1\). Then \(\Delta _{X\backslash A}^{+}\) is invertible if and only if A contains a vertex in each of the 0-components of X.

  2. 2.

    If A is an exhaustive set of X, then \(\Delta _{X\backslash A}^{+}\) is invertible.

  3. 3.

    If A is a deformation retract of X and \(\Delta _{X\backslash A}^{+}\) is invertible then \(H_{d}(X)=0\).

  4. 4.

    If there exists \(\varrho \in X^{d-2}\) all of its cofaces lie in \(X^{d-1}\backslash A\), then \(\Delta _{X\backslash A}^{+}\) is not invertible.

  5. 5.

    Following Duval et al. (2009). If \(|A|=|X^{d}|\) then \(\Delta _{X\backslash A}^{+}\) is invertible if and only if X is a d-SST of itself and \(X^{(d-2)}\cup (X^{d-1}\backslash A)\) is a \(\left( d-1\right) \)-SST of X.

Proof

Let \(f\in \Omega ^{d-1}(X)\).

  1. 1.

    Since \(d=1\).

    $$\begin{aligned} \delta _{1}^{X\backslash A}f([x,y])=f(y){{\textbf {1}}}_{y\notin A}-f(x){{\textbf {1}}}_{x\notin A} \end{aligned}$$

    Thus \(\delta _{1}^{X\backslash A}f=0\) implies that f is constant on every connected component and is zero on every component containing a vertex in A.

  2. 2.

    Assume that A is exhaustive with an exhausting sequence \(\left( A_{n}\right) _{0\le n\le N}\) and that \(f\in \ker \Delta _{X\backslash A}^{+}=\ker \delta _{d}^{X\backslash A}\). For every \(\sigma \in A_{1}\backslash A_{0}\) one can find vertex v such that \(\sigma \vartriangleleft v\sigma \) and all \((d-1)\)-cells of \(v\sigma \) except for \(\sigma \) itself are in \(A_{0}\). Therefore

    $$\begin{aligned} 0=\delta _{d}^{X\backslash A}f(v\sigma )=\sum _{i=0}^{d}f((v\sigma )\backslash (v\sigma )_{i}) \cdot {{\textbf {1}}}_{(v\sigma )\backslash (v\sigma )_{i}\notin A_{\pm }}=f(\sigma ). \end{aligned}$$

    Consequently \(f|_{(A_{1}\backslash A_{0})_{\pm }}\equiv 0\). Proceeding by induction, gives \(f_{(A_{n}\backslash A_{0})_{\pm }}\equiv 0\) for every \(1\le n\le N\). Since \(A_N{\setminus } A_0 = X^{d-1}{\setminus } A\), the kernel of \(\delta _{d}^{X\backslash A}\) is trivial and the result follows.

  3. 3.

    Since \(X^{d-2}\cup A\) is a \((d-1)\)-complex, \(H_{d}(X^{d-2}\cup A)=0\). In addition by Claim B.1 and the assumption that \(\Delta _{X\backslash A}^{+}\) is invertible we have \(H_{d}(X,A)=0\). The result now follows since whenever A is a deformation retract of X the sequence

    $$\begin{aligned} 0\rightarrow H_{d}(X^{d-2}\cup A)\rightarrow H_{d}(X)\rightarrow H_{d}(X,A)\rightarrow H_{d-1}(X^{d-2}\cup A)\rightarrow \cdots \end{aligned}$$

    is exact (see Hatcher 2002, Theorem 2.13).

  4. 4.

    Let \(\varrho \in X^{d-2}\) be a \((d-2)\)-cell all of its cofaces are contained in \(X^{d-1}\backslash A\). With a slight abuse of notation, denote by \(\varrho \) an orientation of the \((d-2)\)-cell and define the \((d-1)\)-forms \({\tilde{f}}=\delta _{d-1}\mathbb {1}_{\varrho }\ne 0\) and \(f={\tilde{f}}|_{(X^{d-1}{\setminus } A)_\pm }\). Since \(\textrm{Supp}({\tilde{f}})\subset (X^{d-1}{\setminus } A)_\pm \), we can think of \({\tilde{f}}\) as an extension of f in the sense of Claim B.1(3). Furthermore, by the chain structure, \(\delta _{d}{\tilde{f}}=\delta _{d}\delta _{d-1}\mathbb {1}_{\varrho }=0\), that is \({\tilde{f}}\in \ker \delta _d\). Due to Claim B.1(3), this is equivalent to \(\Delta _{X\backslash A}^{+}\) not being invertible.

  5. 5.

    This is the content of Duval et al. (2009, Proposition 4.1), see also Kalai (1983) for a discussion on the case case of d-simplexes.

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenthal, R. Simplicial branching random walks. J Appl. and Comput. Topology (2023). https://doi.org/10.1007/s41468-023-00148-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41468-023-00148-3

Keywords

Navigation