Log in

Prediction of nuclear charge density distribution with feedback neural network

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Nuclear charge density distribution plays an important role in both nuclear and atomic physics, for which the two-parameter Fermi (2pF) model has been widely applied as one of the most frequently used models. Currently, the feedforward neural network has been employed to study the available 2pF model parameters for 86 nuclei, and the accuracy and precision of the parameter-learning effect are improved by introducing A\(^{1/3}\) into the input parameter of the neural network. Furthermore, the average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant difference between the average result of the density and parameter values for the average charge density distribution. In addition, the 2pF parameters of 284 (near) stable nuclei are predicted in this study, which provides a reference for the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Rutherford, The scattering of alpha and beta particles by matter and the structure of the atom. Philos. Mag. 21, 669–688 (1911). https://doi.org/10.1080/14786440508637080

    Article  MATH  Google Scholar 

  2. Z. Yang, X. Shang, G. Yong et al., Nucleon momentum distributions in asymmetric nuclear matter. Phys. Rev. C 100, 054325 (2019). https://doi.org/10.1103/PhysRevC.100.054325

    Article  ADS  Google Scholar 

  3. X. Shang, J. Dong, W. Zuo et al., Exact solution of the Brueckner–Bethe-goldstone equation with three-body forces in nuclear matter. Phys. Rev. C 103, 034316 (2021). https://doi.org/10.1103/PhysRevC.103.034316

    Article  ADS  Google Scholar 

  4. C. Horowitz, Neutron rich matter in the laboratory and in the heavens after gw170817. Annals Phys. 411, 167992 (2019). https://doi.org/10.1016/j.aop.2019.167992

    Article  Google Scholar 

  5. Y. Chen, Nuclear matter and neutron star properties with the extended Nambu-Jona-Lasinio model. Chin. Phys. C 43, 035101 (2019). https://doi.org/10.1088/1674-1137/43/3/035101

    Article  ADS  Google Scholar 

  6. C.W. Ma, Y. Liu, H. Wei et al., Determination of neutron-skin thickness using configurational information entropy. Nucl. Sci. Tech. 33, 6 (2022). https://doi.org/10.1007/s41365-022-00997-0

    Article  Google Scholar 

  7. B. Li, N. Tang, Y.H. Zhang et al., Production of p-rich nuclei with \(z=20-25\) based on radioactive ion beams. Nucl. Sci. Tech. 33, 55 (2022). https://doi.org/10.1007/s41365-022-01048-4

    Article  Google Scholar 

  8. L. Li, F.Y. Wang, Y.X. Zhang, Isospin effects on intermediate mass fragments at intermediate energy-heavy ion collisions. Nucl. Sci. Tech. 33, 58 (2022). https://doi.org/10.1007/s41365-022-01050-w

    Article  Google Scholar 

  9. D. Andrae, Nuclear Charge Density and Magnetization Distributions (Springer, Berlin, Heidelberg, 2017), pp.51–81. https://doi.org/10.1007/978-3-642-40766-6_23

    Book  Google Scholar 

  10. A. Patoary, N. Oreshkina, Finite nuclear size effect to the fine structure of heavy muonic atoms. Eur. Phys. J. D 72, 54 (2018). https://doi.org/10.1140/epjd/e2018-80545-9

    Article  ADS  Google Scholar 

  11. L. Visscher, K. Dyall, Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions. At. Data Nucl. Data Tables 67, 207–224 (1997). https://doi.org/10.1006/adnd.1997.0751

    Article  ADS  Google Scholar 

  12. D. Andrae, Finite nuclear charge density distributions in electronic structure calculations for atoms and molecules. Phys. Rep. 336, 413–525 (2000). https://doi.org/10.1016/S0370-1573(00)00007-7

    Article  ADS  Google Scholar 

  13. R. Hofstadter, Electron scattering and nuclear structure. Rev. Mod. Phys. 28, 214–254 (1956). https://doi.org/10.1103/RevModPhys.28.214

    Article  ADS  Google Scholar 

  14. H.F. Ehrenberg, R. Hofstadter, U. Meyer-Berkhout et al., High-energy electron scattering and the charge distribution of carbon-12 and oxygen-16. Phys. Rev. 113, 666–674 (1959). https://doi.org/10.1103/PhysRev.113.666

    Article  ADS  Google Scholar 

  15. W. Kim, J.P. Connelly, J.H. Heisenberg et al., Ground-state charge distribution and transition charge densities of the low-lying states in 86sr. Phys. Rev. C 46, 1656–1666 (1992). https://doi.org/10.1103/PhysRevC.46.1656

    Article  ADS  Google Scholar 

  16. U. Meyer-Berkhout, K.W. Ford, A.E. Green, Charge distrutions of nuclei of the 1p shell. Ann. Phys. 8, 119–171 (1959). https://doi.org/10.1016/0003-4916(59)90065-X

    Article  ADS  Google Scholar 

  17. W. Nan, B. Guo, C.J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at brif: measurement of the angular distribution of \(^{23}\)na + \(^{40}\)ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). https://doi.org/10.1007/s41365-021-00889-9

    Article  Google Scholar 

  18. Y. Chu, Theoretical investigation on elastic electron scatering from some unstable nuclei. Thesis (2011)

  19. C. De Jager, H. De Vries, C. De Vries, Nuclear charge- and magnetization-density-distribution parameters from elastic electron scattering. At. Data Nucl. Data Tables 14, 479–508 (1974). https://doi.org/10.1016/S0092-640X(74)80002-1

    Article  ADS  Google Scholar 

  20. H. De Vries, C. De Jager, C. De Vries, Nuclear charge-density-distribution parameters from elastic electron scattering. At. Data Nucl. Data Tables 36, 495–536 (1987). https://doi.org/10.1016/0092-640X(87)90013-1

    Article  ADS  Google Scholar 

  21. G. Fricke, C. Bernhardt, K. Heilig et al., Nuclear ground state charge radii from electromagnetic interactions. At. Data Nucl. Data Tables 60, 177–285 (1995). https://doi.org/10.1006/adnd.1995.1007

    Article  ADS  Google Scholar 

  22. J. Carlson, S. Gandolfi, F. Pederiva et al., Quantum monte carlo methods for nuclear physics. Rev. Mod. Phys. 87, 1067–1118 (2015). https://doi.org/10.1103/RevModPhys.87.1067

    Article  MathSciNet  ADS  Google Scholar 

  23. W. Dickhoff, C. Barbieri, Self-consistent green’s function method for nuclei and nuclear matter. Prog. Part. Nucl. Phys. 52, 377–496 (2004). https://doi.org/10.1016/j.ppnp.2004.02.038

    Article  ADS  Google Scholar 

  24. G. Hagen, T. Papenbrock, M. Hjorth-Jensen et al., Coupled-cluster computations of atomic nuclei. Rep. Prog. Phys. 77, 096302 (2014). https://doi.org/10.1088/0034-4885/77/9/096302

    Article  ADS  Google Scholar 

  25. D. Lee, Lattice simulations for few- and many-body systems. Prog. Part. Nucl. Phys. 63, 117–154 (2009). https://doi.org/10.1016/j.ppnp.2008.12.001

    Article  ADS  Google Scholar 

  26. M. Bender, P.H. Heenen, P.G. Reinhard, Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003). https://doi.org/10.1103/RevModPhys.75.121

    Article  ADS  Google Scholar 

  27. W. Richter, B. Brown, Nuclear charge densities with the Skyrme Hartree-Fock method. Phys. Rev. C 67, 034317 (2003). https://doi.org/10.1103/PhysRevC.67.034317

    Article  ADS  Google Scholar 

  28. S. Abbas, S. Salman, S. Ebrahiem et al., Investigation of the nuclear structure of some ni and zn isotopes with Skyrme-Hartree-Fock interaction. Baghdad Sci. J. 19, 914–921 (2022). https://doi.org/10.21123/bsj.2022.19.4.0914

    Article  Google Scholar 

  29. A. Abdullah, Matter density distributions and elastic form factors of some two-neutron halo nuclei. Pramana J. Phys. 89, 43 (2017). https://doi.org/10.1007/s12043-017-1445-5

    Article  ADS  Google Scholar 

  30. P. Ring, Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 37, 193–263 (1996). https://doi.org/10.1016/0146-6410(96)00054-3

    Article  ADS  Google Scholar 

  31. D. Vretenar, A. Afanasjev, G. Lalazissis et al., Relativistic Hartree–Bogoliubov theory: static and dynamic aspects of exotic nuclear structure. Phys. Rep. 409, 101–259 (2005). https://doi.org/10.1016/j.physrep.2004.10.001

    Article  ADS  Google Scholar 

  32. J. Meng, H. Toki, S. Zhou et al., Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 57, 470–563 (2006). https://doi.org/10.1016/j.ppnp.2005.06.001

    Article  ADS  Google Scholar 

  33. J. Li, J. Meng, Nuclear magnetic moments in covariant density functional theory. Front. Phys. 13, 132109 (2018). https://doi.org/10.1007/s11467-018-0842-7

    Article  ADS  Google Scholar 

  34. J. Meng, J. Peng, S.Q. Zhang et al., Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation. Front. Phys. 8, 55–79 (2013). https://doi.org/10.1007/s11467-013-0287-y

    Article  ADS  Google Scholar 

  35. S. Shen, H. Liang, W.H. Long et al., Towards an ab initio covariant density functional theory for nuclear structure. Prog. Part. Nucl. Phys. 109, 103713 (2019). https://doi.org/10.1016/j.ppnp.2019.103713

    Article  Google Scholar 

  36. J. Meng, Relativistic Density Functional for Nuclear Structure (World Scientific, Singapore, 2016). https://doi.org/10.1142/9872

    Book  Google Scholar 

  37. K. He, X. Zhang, S. Ren, et al., in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770–778. https://doi.org/10.1109/cvpr.2016.90

  38. G. Huang, Z. Liu, L. van der Maaten, et al., in 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Densely Connected Convolutional Networks. IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 2261–2269. https://doi.org/10.1109/cvpr.2017.243

  39. B. Dzmitry, C. Kyunghyun, B. Yoshua, Neural machine translation by jointly learning to align and translate. ar**v:1409.0473 (2014)

  40. M. Baroni, S. Bernardini, A new approach to the study of translationese: machine-learning the difference between original and translated text. Lit. Linguist. Comput. 21, 259–274 (2005). https://doi.org/10.1093/llc/fqi039

    Article  Google Scholar 

  41. P. Baldi, P. Sadowski, D. Whiteson, Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5, 4308 (2014). https://doi.org/10.1038/ncomms5308

  42. L. Pang, K. Zhou, N. Su et al., An equation-of-state-meter of quantum chromodynamics transition from deep learning. Nat. Commun. 9, 210 (2018). https://doi.org/10.1038/s41467-017-02726-3

    Article  ADS  Google Scholar 

  43. J. Brehmer, K. Cranmer, G. Louppe et al., Constraining effective field theories with machine learning. Phys. Rev. Lett. 121, 111801 (2018). https://doi.org/10.1103/PhysRevLett.121.111801

    Article  Google Scholar 

  44. J. Carrasquilla, R. Melko, Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017). https://doi.org/10.1038/nphys4035

    Article  Google Scholar 

  45. G. Carleo, M. Troyer, Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017). https://doi.org/10.1126/science.aag2302

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. S. Gazula, J. Clark, H. Bohr, Learning and prediction of nuclear stability by neural networks. Nucl. Phys. A 540, 1–26 (1992). https://doi.org/10.1016/0375-9474(92)90191-L

    Article  ADS  Google Scholar 

  47. K. Gernoth, J. Clark, J. Prater et al., Neural network models of nuclear systematics. Phys. Lett. B 300, 1–7 (1993). https://doi.org/10.1016/0370-2693(93)90738-4

    Article  ADS  Google Scholar 

  48. Z. Niu, H. Liang, Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects. Phys. Lett. B 778, 48–53 (2018). https://doi.org/10.1016/j.physletb.2018.01.002

    Article  ADS  Google Scholar 

  49. Z.M. Niu, H.Z. Liang, Nuclear mass predictions with machine learning reaching the accuracy required by \(r\)-process studies. Phys. Rev. C 106, L021303 (2022). https://doi.org/10.1103/PhysRevC.106.L021303

    Article  ADS  Google Scholar 

  50. J.W. Clark, K.A. Gernoth, S. Dittmar et al., Higher-order probabilistic perceptrons as Bayesian inference engines. Phys. Rev. E 59, 6161–6174 (1999). https://doi.org/10.1103/PhysRevE.59.6161

    Article  ADS  Google Scholar 

  51. S. Athanassopoulos, E. Mavrommatis, K. Gernoth et al., Nuclear mass systematics using neural networks. Nucl. Phys. A 743, 222–235 (2004). https://doi.org/10.1016/j.nuclphysa.2004.08.006

    Article  ADS  Google Scholar 

  52. J. Clark, H. Li, Application of support vector machines to global prediction of nuclear properties. Int. J. Mod. Phys. B 20, 5015–5029 (2006). https://doi.org/10.1142/S0217979206036053

    Article  MATH  ADS  Google Scholar 

  53. K. Gernoth, J. Clark, Neural networks that learn to predict probabilities: global models of nuclear stability and decay. Neural Netw. 8, 291–311 (1995). https://doi.org/10.1016/0893-6080(94)00071-S

    Article  Google Scholar 

  54. N. Costiris, E. Mavrommatis, K. Gernoth et al., Decay systematics: a global statistical model for half-lives. Phys. Rev. C 80, 044332 (2009). https://doi.org/10.1103/PhysRevC.80.044332

    Article  ADS  Google Scholar 

  55. X.C. Ming, H.F. Zhang, R.R. Xu et al., Nuclear mass based on the multi-task learning neural network method. Nucl. Sci. Tech. 33, 48 (2022). https://doi.org/10.1007/s41365-022-01031-z

    Article  Google Scholar 

  56. Z.P. Gao, Y.J. Wang, H.L. Lv et al., Machine learning the nuclear mass. Nucl. Sci. Tech. 32, 109 (2021). https://doi.org/10.1007/s41365-021-00956-1

    Article  Google Scholar 

  57. Y. Wang, X. Zhang, Z. Niu et al., Study of nuclear low-lying excitation spectra with the Bayesian neural network approach. Phys. Lett. B 830, 137154 (2022). https://doi.org/10.1016/j.physletb.2022.137154

    Article  Google Scholar 

  58. S. Akkoyun, H. Kaya, Y. Torun, Estimations of first 2(+) energy states of even-even nuclei by using artificial neural networks. Indian J. Phys. 96, 1791–1797 (2022). https://doi.org/10.1007/s12648-021-02099-w

    Article  ADS  Google Scholar 

  59. R.D. Lasseri, D. Regnier, J.P. Ebran et al., Taming nuclear complexity with a committee of multilayer neural networks. Phys. Rev. Lett. 124, 162502 (2020). https://doi.org/10.1103/PhysRevLett.124.162502

    Article  ADS  Google Scholar 

  60. S. Akkoyun, N. Laouet, F. Benrachi, Improvement studies of an effective interaction for n=z sd-shell nuclei by neural networks. ar**v:2001.08561 (2020)

  61. R. Utama, W.C. Chen, J. Piekarewicz, Nuclear charge radii: density functional theory meets Bayesian neural networks. J. Phys. G Nucl. Part. Phys. 43, 114002 (2016). https://doi.org/10.1088/0954-3899/43/11/114002

    Article  Google Scholar 

  62. Y. Ma, C. Su, J. Liu et al., Predictions of nuclear charge radii and physical interpretations based on the Naive Bayesian probability classifier. Phys. Rev. C 101, 21 (2020). https://doi.org/10.1103/PhysRevC.101.014304

    Article  Google Scholar 

  63. D. Wu, C. Bai, H. Sagawa et al., Calculation of nuclear charge radii with a trained feed-forward neural network. Phys. Rev. C 102, 054323 (2020). https://doi.org/10.1103/PhysRevC.102.054323

    Article  ADS  Google Scholar 

  64. U. Rodriguez, C. Vargas, M. Goncalves et al., Alpha half-lives calculation of superheavy nuclei with q(alpha)-value predictions based on the Bayesian neural network approach. J. Phys. G Nucl. Part. Phys. 46, 115109 (2019). https://doi.org/10.1088/1361-6471/ab2c86

    Article  ADS  Google Scholar 

  65. U. Banos Rodriguez, C. Zuniga Vargas, M. Goncalves et al., Bayesian Neural Network improvements to nuclear mass formulae and predictions in the SuperHeavy Elements region. Euro. Phys. Lett. 127, 42001 (2019). https://doi.org/10.1209/0295-5075/127/42001

    Article  ADS  Google Scholar 

  66. Z. Niu, H. Liang, B. Sun et al., Predictions of nuclear beta-decay half-lives with machine learning and their impact on r-process nucleosynthesis. Phys. Rev. C 99, 064307 (2019). https://doi.org/10.1103/PhysRevC.99.064307

    Article  ADS  Google Scholar 

  67. N. Costiris, E. Mavrommatis, K. Gernoth et al., Decoding beta-decay systematics: a global statistical model for beta(-) half-lives. Phys. Rev. C 80, 044332 (2009). https://doi.org/10.1103/PhysRevC.80.044332

    Article  ADS  Google Scholar 

  68. N. Costiris, E. Mavrommatis, K. Gernoth, et al., Statistical global modeling of beta-decay halflives systematics using multilayer feedforward neural networks and support vector machines. ar**v:0809.0383 (2008)

  69. Z. Yuan, D. Tian, J. Li et al., Magnetic moment predictions of odd-a nuclei with the Bayesian neural network approach. Chin. Phys. C 45, 124107 (2021). https://doi.org/10.1088/1674-1137/ac28f9

    Article  ADS  Google Scholar 

  70. C.W. Ma, D. Peng, H.L. Wei et al., Isotopic cross-sections in proton induced spallation reactions based on the Bayesian neural network method. Chin. Phys. C 44, 014104 (2020). https://doi.org/10.1088/1674-1137/44/1/014104

    Article  ADS  Google Scholar 

  71. C.W. Ma, D. Peng, H.L. Wei, et al., A Bayesian-neural-network prediction for fragment production in proton induced spallation reaction. Chin. Phys. C 44, 124107 (2020). ar**v:2007.15416, https://doi.org/10.1088/1674-1137/abb657

  72. D. Peng, H.L. Wei, X.X. Chen et al., Bayesian evaluation of residual production cross sections in proton-induced nuclear spallation reactions. J. Phys. G Nucl. Part. Phys. 49, 085102 (2022). https://doi.org/10.1088/1361-6471/ac7069

    Article  ADS  Google Scholar 

  73. C.W. Ma, H.L. Wei, X.Q. Liu et al., Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys. 121, 103911 (2021). https://doi.org/10.1016/j.ppnp.2021.103911

    Article  Google Scholar 

  74. C.W. Ma, X.B. Wei, X.X. Chen et al., Precise machine learning models for fragment production in projectile fragmentation reactions using Bayesian neural networks. Chin. Phys. C 46, 074104 (2022). https://doi.org/10.1088/1674-1137/ac5efb

    Article  ADS  Google Scholar 

  75. S. Akkoyun, T. Bayram, S. Kara et al., An artificial neural network application on nuclear charge radii. J. Phys. G Nucl. Part. Phys. 40, 055106 (2013). https://doi.org/10.1088/0954-3899/40/5/055106

    Article  ADS  Google Scholar 

  76. T. Bayram, S. Akkoyun, S. Okan Kara, A study on ground-state energies of nuclei by using neural networks. Ann. Nucl. Energy 63, 172–175 (2014). https://doi.org/10.1016/j.anucene.2013.07.039

    Article  Google Scholar 

  77. S. Akkoyun, T. Bayram, Estimations of fission barrier heights for ra, ac, rf and db nuclei by neural networks. Int. J. Mod. Phys. E 23, 1450064 (2014). https://doi.org/10.1142/S0218301314500645

    Article  ADS  Google Scholar 

  78. R. Utama, J. Piekarewicz, H. Prosper, Nuclear mass predictions for the crustal composition of neutron stars: a Bayesian neural network approach. Phys. Rev. C 93, 014311 (2016). https://doi.org/10.1103/PhysRevC.93.014311

    Article  ADS  Google Scholar 

  79. L. Neufcourt, Y. Cao, W. Nazarewicz et al., Bayesian approach to model-based extrapolation of nuclear observables. Phys. Rev. C 98, 034318 (2018). https://doi.org/10.1103/PhysRevC.98.034318

    Article  ADS  Google Scholar 

  80. X. Wang, L. Zhu, J. Su, Providing physics guidance in Bayesian neural networks from the input layer: the case of giant dipole resonance predictions. Phys. Rev. C 104, 034317 (2021). https://doi.org/10.1103/PhysRevC.104.034317

    Article  ADS  Google Scholar 

  81. D. Wu, C. Bai, H. Sagawa et al., beta-delayed one-neutron emission probabilities within a neural network model. Phys. Rev. C 104, 054303 (2021). https://doi.org/10.1103/PhysRevC.104.054303

    Article  ADS  Google Scholar 

  82. X.H. Wu, Z.X. Ren, P.W. Zhao, Nuclear energy density functionals from machine learning. Phys. Rev. C 105, L031303 (2022). https://doi.org/10.1103/PhysRevC.105.L031303

    Article  ADS  Google Scholar 

  83. E. Alhassan, D. Rochman, A. Vasiliev et al., Iterative Bayesian Monte Carlo for nuclear data evaluation. Nucl. Sci. Tech. 33, 50 (2022). https://doi.org/10.1007/s41365-022-01034-w

    Article  Google Scholar 

  84. K. Levenberg, A methord for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2, 164–168 (1944). https://doi.org/10.1090/qam/10666

    Article  MathSciNet  MATH  Google Scholar 

  85. D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963). https://doi.org/10.1137/0111030

    Article  MathSciNet  MATH  Google Scholar 

  86. H. Robbins, S. Monro, A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (2007). https://doi.org/10.1214/aoms/1177729586

    Article  MathSciNet  MATH  Google Scholar 

  87. C.-Y. Tseng, Radius of nuclear charge distribution and nuclear binding energy. Acta Phys. Sin. 13, 357–364 (1957). https://doi.org/10.7498/aps.13.357

    Article  Google Scholar 

  88. R. Hofstadter, B. Hahn, A. Knudsen et al., High-energy electron scattering and nuclear structure determinations. ii. Phys. Rev. 95, 512–515 (1954). https://doi.org/10.1103/PhysRev.95.512

    Article  ADS  Google Scholar 

  89. D. Yennie, D. Ravenhall, R. Wilson, Phase-shift calculation of high-energy electron scattering. Phys. Rev. 95, 500–512 (1954). https://doi.org/10.1103/PhysRev.95.500

    Article  MATH  ADS  Google Scholar 

  90. P. Reinhard, W. Nazarewicz, R. Ruiz, Beyond the charge radius: The information content of the fourth radial moment. Phys. Rev. C 101, 021301 (2020). https://doi.org/10.1103/PhysRevC.101.021301

    Article  ADS  Google Scholar 

  91. T. Naito, G. Colo, H. Liang et al., Second and fourth moments of the charge density and neutron-skin thickness of atomic nuclei. Phys. Rev. C 104, 024316 (2021). https://doi.org/10.1103/PhysRevC.104.024316

    Article  ADS  Google Scholar 

  92. V. Shabaev, Finite nuclear size corrections to the energy levels of the multicharged ions. J. Phys. B 26, 1103–1108 (1993). https://doi.org/10.1088/0953-4075/26/6/011

    Article  ADS  Google Scholar 

  93. I. Angeli, K. Marinova, Table of experimental nuclear ground state charge radii: an update. At. Data Nucl. Data Tables 99, 69–95 (2013). https://doi.org/10.1016/j.adt.2011.12.006

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Li or Zhong-Ming Niu.

Ethics declarations

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Tian-Shuai Shang, Jian Li and Zhong-Ming Niu. The first draft of the manuscript was written by Tian-Shuai Shang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Additional information

This work was supported by the Natural Science Foundation of Jilin Province (No. 20220101017JC) and the National Natural Science Foundation of China (Nos. 11675063, 11875070, and 11935001), Key Laboratory of Nuclear Data foundation (JCKY2020201C157), and the Anhui Project (Z010118169).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, TS., Li, J. & Niu, ZM. Prediction of nuclear charge density distribution with feedback neural network. NUCL SCI TECH 33, 153 (2022). https://doi.org/10.1007/s41365-022-01140-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01140-9

Keywords

Navigation