Log in

Nuclei with Up to \(\varvec{A=6}\) Nucleons with Artificial Neural Network Wave Functions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The ground-breaking works of Weinberg have opened the way to calculations of atomic nuclei that are based on systematically improvable Hamiltonians. Solving the associated many-body Schrödinger equation involves non-trivial difficulties, due to the non-perturbative nature and strong spin-isospin dependence of nuclear interactions. Artificial neural networks have proven to be able to compactly represent the wave functions of nuclei with up to \(A=4\) nucleons. In this work, we extend this approach to \(^6\)Li and \(^6\)He nuclei, using as input a leading-order pionless effective field theory Hamiltonian. We successfully benchmark their binding energies, point-nucleon densities, and radii with the highly-accurate hyperspherical harmonics method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Weinberg, Phys. Lett. B 251, 288 (1990). https://doi.org/10.1016/0370-2693(90)90938-3

    Article  ADS  Google Scholar 

  2. S. Weinberg, Nucl. Phys. B 363, 3 (1991). https://doi.org/10.1016/0550-3213(91)90231-L

    Article  ADS  Google Scholar 

  3. S. Weinberg, Phys. Lett. B 295, 114 (1992). https://doi.org/10.1016/0370-2693(92)90099-P

    Article  ADS  Google Scholar 

  4. U. van Kolck, Eff. Field Theor. Loosely Bound Nucl. 879, 123 (2014). https://doi.org/10.1007/978-3-642-45141-6_4

    Article  Google Scholar 

  5. E. Epelbaum, H.W. Hammer, U.G. Meissner, Rev. Mod. Phys. 81, 1773 (2009). https://doi.org/10.1103/RevModPhys.81.1773

    Article  ADS  Google Scholar 

  6. R. Machleidt, D. Entem, Phys. Rept. 503, 1 (2011). https://doi.org/10.1016/j.physrep.2011.02.001

    Article  ADS  Google Scholar 

  7. P.F. Bedaque, U. van Kolck, Ann. Rev. Nucl. Part. Sci. 52, 339 (2002). https://doi.org/10.1146/annurev.nucl.52.050102.090637

    Article  ADS  Google Scholar 

  8. H. Hergert, Front. Phys. 8, 379 (2020). https://doi.org/10.3389/fphy.2020.00379

    Article  Google Scholar 

  9. J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schiavilla, K. Schmidt, R. Wiringa, Rev. Mod. Phys. 87, 1067 (2015). https://doi.org/10.1103/RevModPhys.87.1067

    Article  ADS  Google Scholar 

  10. K. Schmidt, S. Fantoni, Phys. Lett. B 446, 99 (1999). https://doi.org/10.1016/S0370-2693(98)01522-6

    Article  ADS  Google Scholar 

  11. M. Piarulli, I. Bombaci, D. Logoteta, A. Lovato, R. Wiringa, Phys. Rev. C 101(4), 045801 (2020). https://doi.org/10.1103/PhysRevC.101.045801

    Article  ADS  Google Scholar 

  12. D. Lonardoni, I. Tews, S. Gandolfi, J. Carlson, Phys. Rev. Res. 2, 022033 (2020). https://doi.org/10.1103/PhysRevResearch.2.022033

    Article  Google Scholar 

  13. S. Gandolfi, D. Lonardoni, A. Lovato, M. Piarulli, Front. Phys. 8, 117 (2020). https://doi.org/10.3389/fphy.2020.00117

    Article  Google Scholar 

  14. E. Dumitrescu, A. McCaskey, G. Hagen, G. Jansen, T. Morris, T. Papenbrock, R. Pooser, D. Dean, P. Lougovski, Phys. Rev. Lett. 120(21), 210501 (2018). https://doi.org/10.1103/PhysRevLett.120.210501

    Article  ADS  Google Scholar 

  15. A. Roggero, J. Carlson, Phys. Rev. C 100(3), 034610 (2019). https://doi.org/10.1103/PhysRevC.100.034610

    Article  ADS  Google Scholar 

  16. A. Roggero, A. Baroni, Phys. Rev. A 101(2), 022328 (2020). https://doi.org/10.1103/PhysRevA.101.022328

    Article  ADS  Google Scholar 

  17. G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, L. Zdeborová, Rev. Modern Phys. 91(4), 045002 (2019)

    Article  ADS  Google Scholar 

  18. G. Carleo, M. Troyer, Science 355(6325), 602 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Nomura, A.S. Darmawan, Y. Yamaji, M. Imada, Phys. Rev. B 96(20), 205122 (2017). https://doi.org/10.1103/PhysRevB.96.205152

    Article  ADS  Google Scholar 

  20. H. Saito, J. Phys. Soc. Jpn. (2018). https://doi.org/10.7566/JPSJ.87.074002

    Article  Google Scholar 

  21. K. Choo, G. Carleo, N. Regnault, T. Neupert, Phys. Rev. Lett. (2018). https://doi.org/10.1103/PhysRevLett.121.167204

    Article  Google Scholar 

  22. Y. Nomura, J. Phys. Soc. Jpn. 89(5), 054706 (2020). https://doi.org/10.7566/JPSJ.89.054706

    Article  ADS  Google Scholar 

  23. N. Yoshioka, R. Hamazaki, Phys. Rev. B 99(21), 214306 (2019). https://doi.org/10.1103/PhysRevB.99.214306

    Article  ADS  Google Scholar 

  24. A. Nagy, V. Savona, Phys. Rev. Lett. 122(25), 250501 (2019). https://doi.org/10.1103/PhysRevLett.122.250501

    Article  ADS  MathSciNet  Google Scholar 

  25. F. Vicentini, A. Biella, N. Regnault, C. Ciuti, Phys. Rev. Lett. (2019). https://doi.org/10.1103/PhysRevLett.122.250503

    Article  Google Scholar 

  26. M.J. Hartmann, G. Carleo, Phys. Rev. Lett. 122(25), 250502 (2019)

    Article  ADS  Google Scholar 

  27. F. Ferrari, F. Becca, J. Carrasquilla, Phys. Rev. B 100(12), 125131 (2019)

    Article  ADS  Google Scholar 

  28. D. Pfau, J.S. Spencer, A.e.G.d.G. Matthews, W.M.C. Foulkes, ar**v e-prints ar**v:1909.02487 (2019)

  29. J. Hermann, Z. Schätzle, F. Noé, ar**v e-prints ar**v:1909.08423 (2019)

  30. K. Choo, A. Mezzacapo, G. Carleo, Nat. Commun. 11(1), 2368 (2020)

    Article  ADS  Google Scholar 

  31. J.W.T. Keeble, A. Rios, Phys. Lett. B 809, 135743 (2020). https://doi.org/10.1016/j.physletb.2020.135743

    Article  Google Scholar 

  32. C. Adams, G. Carleo, A. Lovato, N. Rocco, Phys. Rev. Lett. 127(2), 022502 (2021). https://doi.org/10.1103/PhysRevLett.127.022502

    Article  ADS  Google Scholar 

  33. A. Kievsky, S. Rosati, M. Viviani, L. Marcucci, L. Girlanda, J. Phys. G: Nucl. Part. Phys. 35(6), 063101 (2008). https://doi.org/10.1088/0954-3899/35/6/063101

    Article  ADS  Google Scholar 

  34. R. Schiavilla, L. Girlanda, A. Gnech, A. Kievsky, A. Lovato, L.E. Marcucci, M. Piarulli, M. Viviani, Phys. Rev. C 103(5), 054003 (2021). https://doi.org/10.1103/PhysRevC.103.054003

    Article  ADS  Google Scholar 

  35. J.W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A 653, 386 (1999). https://doi.org/10.1016/S0375-9474(99)00298-5

    Article  ADS  Google Scholar 

  36. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995). https://doi.org/10.1103/PhysRevC.51.38

    Article  ADS  Google Scholar 

  37. C.J. Yang, Eur. Phys. J. A 56(3), 96 (2020). https://doi.org/10.1140/epja/s10050-020-00104-0

    Article  ADS  Google Scholar 

  38. P.F. Bedaque, H. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463 (1999). https://doi.org/10.1103/PhysRevLett.82.463

    Article  ADS  Google Scholar 

  39. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953). https://doi.org/10.1063/1.1699114

    Article  ADS  Google Scholar 

  40. P. Massella, F. Barranco, D. Lonardoni, A. Lovato, F. Pederiva, E. Vigezzi, J. Phys. G 47, 035105 (2020). https://doi.org/10.1088/1361-6471/ab588c

    Article  ADS  Google Scholar 

  41. M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, A. Smola, ar**v e-prints ar**v:1703.06114 (2017)

  42. E. Wagstaff, F.B. Fuchs, M. Engelcke, I. Posner, M. Osborne, ar**v e-prints ar**v:1901.09006 (2019)

  43. C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, R. Garcia, Advances in Neural Information Processing Systems 13 (MIT Press, Cambridge, 2001), pp. 472–478

    Google Scholar 

  44. S. Sorella, Phys. Rev. B 71, 241103 (2005)

    Article  ADS  Google Scholar 

  45. L.E. Marcucci, J. Dohet-Eraly, L. Girlanda, A. Gnech, A. Kievsky, M. Viviani, Front. Phys. 8, 69 (2020)

    Article  Google Scholar 

  46. A. Gnech, M. Viviani, L.E. Marcucci, Phys. Rev. C 102, 014001 (2020)

    Article  ADS  Google Scholar 

  47. A. Gnech, L.E. Marcucci, R. Schiavilla, M. Viviani, (2021). Ar**v:2016.07439. To be published on Phys. Rev. C

  48. J. Beringer et al., Phys. Rev. D 86, 010001 (2012). https://doi.org/10.1103/PhysRevD.86.010001

    Article  ADS  Google Scholar 

  49. J.L. Friar, J. Martorell, D.W.L. Sprung, Phys. Rev. A 56, 4579 (1997). https://doi.org/10.1103/PhysRevA.56.4579

    Article  ADS  Google Scholar 

  50. NNDC (2021), Nudat2, https://www.nndc.bnl.gov/nudat2/

  51. E. Tiesinga, P.J. Mohr, D.B. Newell, B.N. Taylor, CODATA2018 (2020). Available at http://physics.nist.gov/constants

  52. A. Amroun, V. Breton, J.M. Cavedon, B. Frois, D. Goutte, F. Juster, P. Leconte, J. Martino, Y. Mizuno, X.H. Phan, S. Platchkov, I. Sick, S. Williamson, Nucl. Phys. A 579(3), 596 (1994)

    Article  ADS  Google Scholar 

  53. D.C. Morton, Q. Wu, G.W.F. Drake, Phys. Rev. A 73, 034502 (2006)

    Article  ADS  Google Scholar 

  54. J. Krauth, K. Schuhmann, M. Ahmed et al., Nature 598, 527 (2021). https://doi.org/10.1038/s41586-021-03183-1

    Article  ADS  Google Scholar 

  55. L.B. Wang, P. Mueller, K. Bailey, G.W.F. Drake, J.P. Greene, D. Henderson, R.J. Holt, R.V.F. Janssens, C.L. Jiang, Z.T. Lu, T.P. O’Connor, R.C. Pardo, K.E. Rehm, J.P. Schiffer, X.D. Tang, Phys. Rev. Lett. 93, 142501 (2004)

    Article  ADS  Google Scholar 

  56. M. Puchalski, K. Pachucki, Phys. Rev. Lett. 111, 243001 (2013)

    Article  ADS  Google Scholar 

  57. R. Wiringa. Private communication

  58. L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, U. van Kolck, Phys. Lett. B 772, 839 (2017). https://doi.org/10.1016/j.physletb.2017.07.048

    Article  ADS  Google Scholar 

  59. H. Kamada et al., Phys. Rev. C 64, 044001 (2001). https://doi.org/10.1103/PhysRevC.64.044001

    Article  ADS  Google Scholar 

  60. P. Maris, J.P. Vary, S. Gandolfi, J. Carlson, S.C. Pieper, Phys. Rev. C 87(5), 054318 (2013). https://doi.org/10.1103/PhysRevC.87.054318

    Article  ADS  Google Scholar 

  61. R.J. Furnstahl, D.R. Phillips, S. Wesolowski, J. Phys. G 42(3), 034028 (2015). https://doi.org/10.1088/0954-3899/42/3/034028

    Article  ADS  Google Scholar 

  62. J.A. Melendez, R.J. Furnstahl, D.R. Phillips, M.T. Pratola, S. Wesolowski, Phys. Rev. C 100(4), 044001 (2019). https://doi.org/10.1103/PhysRevC.100.044001

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The present research is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contracts DE-AC05-06OR23177 (A.G.), DE-AC02-06CH11357, by the NUCLEI SciDAC program (A.L., N.B.) and by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics (N.R.). A.L. and N.B. were also supported by DOE Early Career Research Program and Argonne LDRD awards. A.L acknowledges funding from the INFN grant INNN3, and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824093. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. The calculations were performed using resources of the Laboratory Computing Resource Center of Argonne National Laboratory, the National Energy Research Supercomputer Center (NERSC), and through a CINECA-INFN agreement that provides access to resources on MARCONI at CINECA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Lovato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnech, A., Adams, C., Brawand, N. et al. Nuclei with Up to \(\varvec{A=6}\) Nucleons with Artificial Neural Network Wave Functions. Few-Body Syst 63, 7 (2022). https://doi.org/10.1007/s00601-021-01706-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01706-0

Navigation