Log in

Strategies for Targeting Cancer Immunotherapy Through Modulation of the Tumor Microenvironment

  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Cancer immunotherapeutic strategies have shifted the focus of cancer treatment from eradicating the tumor cell by conventional cytotoxic chemotherapy, to educating the immune system to eliminate tumor, thereby preventing the recurrence of cancer. The understanding of tumor microenvironment and its components which generate an immunosuppressive environment is critical in further develo** efficient immunotherapies. In this review, we have classified the current immunotherapies based on their effect in modulating the tumor microenvironment. Additionally, we propose the inclusion of nanotechnology and tissue engineering approaches, which provide unique strategies to enhance the therapeutic efficacy and could lead to develo** nano/engineered immunotherapies for improved clinical outcomes. Specifically, we focus on criteria for designing nano/engineered immunotherapies and discuss targeted delivery strategies that can optimize the bioavailability of immunotherapies and, in turn, improve the therapeutic outcomes in the treatment of cancer.

Lay Summary

Several strategies aimed to exploit the therapeutic benefits of immunotherapy are based on alterations of the complex immunosuppressive tumor microenvironment. Such targeted approaches have also been significantly improved by various design criteria based on the concepts of nanotechnology and tissue engineering. The properties of specific targeting, controlled release, and ability to attain enhanced therapeutic effects with low doses conferred by these approaches have immensely helped to surmount the side effects and off-target issues of existing methods. Incorporation of these design criteria while develo** various carrier systems for targeted immunotherapy would certainly enhance their clinical translation potential, eventually augmenting anti-tumor responses.

Future Work

Modulation of tumor microenvironment with strategies discussed in this review will provide additional opportunities to improve cancer immunotherapy, especially in challenging diseases such as pancreatic and brain tumors. Various design attributes with targeted systems would provide numerous advantages, widening the scope of clinical translation and benefits to cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TME:

tumor microenvironment

CAF:

cancer-associated fibroblasts

Tregs :

regulatory T cells

MDSC:

myeloid-derived suppressor cells

TAM:

tumor-associated macrophages

DCs:

dendritic cells

FAPa:

fibroblast activation protein

TCR:

T cell receptor

CAR:

chimeric antigen receptor

CAR-T:

CAR-expressing T cells

DAMP:

damage-associated molecular patterns

CpG-ODNs:

Cytosine-guanosine oligodeoxynucleotide

GPI:

glycosyl-phosphatidylinositol

pal-prot A:

palmitated protein A

HER2:

human epidermal growth factor receptor 2

ADCC:

antibody-dependent cell-mediated cytotoxicity

TDLN:

tumor-draining lymph nodes

APC:

antigen presenting cells

PPS:

poly(propylene) sulfide

TLR:

toll-like receptor

TRP2:

tyrosine-related protein 2

TADCs:

tumor-associated dendritic cells

SLBs:

supported lipid bilayers

MSRs:

mesoporous silica microrods

APC-ms:

APC-mimetic scaffolds

MSNP:

mesoporous silica nanoparticles

CRS:

cytokine-release syndrome

ROS:

reactive oxygen species

GEM:

gemcitabine

GM-CSF:

granulocyte-macrophage colony stimulating factor

HA:

hyaluronic acid

PEI:

poly(ethyleneimine)

NSCLC:

non-small cell lung cancer

GAC:

gastric adenocarcinoma

IFP:

interstitial fluid pressure

IDO1:

indoleamine 2,3-dioxygenase-1

ALL:

acute lymphoblastic leukemia

NK:

natural killer cells

TILs:

tumor infiltrating lymphocytes

PEGPH20:

PEGylated recombinant human hyaluronidase PH20

References

  1. https://www.cancer.org/research/cancer-facts-statistics/global.html. Global cancer facts & figures: American Cancer Society.

  2. Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3:250.

    CAS  Google Scholar 

  3. Weiden J, Tel J, Figdor CG. Synthetic immune niches for cancer immunotherapy. Nat Rev Immunol. 2018;18:212–9.

    CAS  Google Scholar 

  4. Cheung AS, Mooney DJ. Engineered materials for cancer immunotherapy. Nano Today. 2015;10:511–31.

    CAS  Google Scholar 

  5. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.

    CAS  Google Scholar 

  6. Yu Y, Cui J. Present and future of cancer immunotherapy: a tumor microenvironmental perspective. Oncol Lett. 2018;16:4105–13.

    Google Scholar 

  7. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5:263–74.

    CAS  Google Scholar 

  8. TL W. The tumor microenvironment and its role in promoting tumor growth. Oncogene Oncogene. 2008;27:5904–12.

    Google Scholar 

  9. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2013;125:5591–6.

    Google Scholar 

  10. Malik R, Lelkes PI, Cukierman E. Biomechanical and biochemical remodeling of stromal extracellular matrix in cancer. Trends Biotechnol. 2015;33:230–6.

    CAS  Google Scholar 

  11. Alexander B, Bloom M, Zaman H. Influence of the microenvironment on melanoma cell fate determination and phenotype. Physiol Genomics. 2014;46:309–14.

    Google Scholar 

  12. Junttila MR, De Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature. 2013;501:346–54.

    CAS  Google Scholar 

  13. Finn OJ. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol. 2012;23:8–11.

    Google Scholar 

  14. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98.

    CAS  Google Scholar 

  15. Joyce J, Quail D. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Google Scholar 

  16. Kerkar SP, Restifo NP. Cellular constituents of immune escape within the tumor microenvironment. Cancer Res. 2012;72:3125–30.

    CAS  Google Scholar 

  17. Gabriel A, Rabinovich D, Gabrilovich EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–96.

    Google Scholar 

  18. Arina A, Corrales L, Bronte V. Enhancing T cell therapy by overcoming the immunosuppressive tumor microenvironment. Semin Immunol. 2016;28:54–63.

    CAS  Google Scholar 

  19. Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol. 2006;90:51–81.

    CAS  Google Scholar 

  20. Shimizu K, Iyoda T, Okada M, Yamasaki S, Fujii SI. Immune suppression and reversal of the suppressive tumor microenvironment. Int Immunol. 2018;30:445–55.

    CAS  Google Scholar 

  21. Nishikawa H, Shimon S. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol. 2014;27:109–18.

    Google Scholar 

  22. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–30.

    CAS  Google Scholar 

  23. Bruni D, Galon J. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18:197–218.

    Google Scholar 

  24. Fearon DT. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol Res. 2014;2:187–93.

    CAS  Google Scholar 

  25. Kraman M, Bambrough PJ, Arnold JN, et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science (80). 2010;330:827–30.

    CAS  Google Scholar 

  26. Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer. 2016;138:1058–66.

    CAS  Google Scholar 

  27. Calcinotto A, Filipazzi P, Grioni M, Iero M, de Milito A, Ricupito A, et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res. 2012;72:2746–56.

    CAS  Google Scholar 

  28. Wu AA, Drake V, Huang HS, et al. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology. 2015;4:1–14.

    Google Scholar 

  29. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 2012;12:237–51.

    CAS  Google Scholar 

  30. Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P. Harnessing the immune system to improve cancer therapy. Ann Transl Med. 2016;4:261.

    Google Scholar 

  31. Lesterhuis WJ, Haanen JB, Punt CJ. Cancer immunotherapy--revisited. Nat Rev Drug Discov 2011/08/02. 2011;10:591–600.

    CAS  Google Scholar 

  32. Brinkman JA, Fausch SC, Weber JS, et al. Peptide-based vaccines for cancer immunotherapy. Expert Opin Biol Ther. 2004;4:181–98.

    CAS  Google Scholar 

  33. Hobernik D, Bros M. DNA vaccines-how far from clinical use? Int J Mol Sci. 2018;2018:19.

    Google Scholar 

  34. Melief CJ, van der Burg SH. Immunotherapy of established (pre) malignant disease by synthetic long peptide vaccines. Nat Rev Cancer. 2008;8:351–60.

    CAS  Google Scholar 

  35. Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev. 2011;239:62–84.

    CAS  Google Scholar 

  36. McNamara MA, Nair SK, Holl EK. RNA-based vaccines in cancer immunotherapy. J Immunol Res. 2015;2015:794528.

    Google Scholar 

  37. Lundstrom K. Latest development on RNA-based drugs and vaccines. Futur Sci OA. 2018;4:FSO300.

    Google Scholar 

  38. Banday AH, Jeelani S, Hruby VJ. Cancer vaccine adjuvants--recent clinical progress and future perspectives. Immunopharmacol Immunotoxicol. 2014;37:1–11.

    Google Scholar 

  39. Hong E, Usiskin IM, Bergamaschi C, et al. Configuration-dependent presentation of multivalent IL-15:IL-15Ralpha enhances the antigen-specific T cell response and anti-tumor immunity. J Biol Chem. 2016;291:8931–50.

    CAS  Google Scholar 

  40. Luo Z, Wang C, Yi H, et al. Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials. 2014;38:50–60.

    Google Scholar 

  41. Molino NM, Neek M, Tucker JA, Nelson EL, Wang SW. Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses. Biomaterials. 2016;86:83–91.

    CAS  Google Scholar 

  42. Galluzzi L, Buque A, Kepp O, et al. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2016/11/01. 2017;17:97–111.

    CAS  Google Scholar 

  43. Fucikova J, Kralikova P, Fialova A, et al. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res. 2011;71:4821–33.

    CAS  Google Scholar 

  44. Martins I, Kepp O, Schlemmer F, et al. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene. 2010/12/15. 2011;30:1147–58.

    CAS  Google Scholar 

  45. Sistigu A, Yamazaki T, Vacchelli E, et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20:1301–9.

    CAS  Google Scholar 

  46. Mazumder A, Lee J, Talhi O, et al. Hydroxycoumarin OT-55 kills CML cells alone or in synergy with Imatinib or Synribo: involvement of ER stress and DAMP release. Cancer Lett. 2018;438:197–218.

    CAS  Google Scholar 

  47. Menger L, Vacchelli E, Adjemian S, et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med. 2012;4:143ra99.

    Google Scholar 

  48. Mazumder A, Cerella C, Diederich M. Natural scaffolds in anticancer therapy and precision medicine. Biotechnol Adv. 2018;36:1563–85.

    CAS  Google Scholar 

  49. Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 2010/04/24. 2010;10:317–27.

    CAS  Google Scholar 

  50. Vacchelli E, Pol J, Bloy N, et al. Trial watch: tumor-targeting monoclonal antibodies for oncological indications. Oncoimmunology. 2015;4:e985940.

    Google Scholar 

  51. Galluzzi L, Vacchelli E, Bravo-San Pedro JM, et al. Classification of current anticancer immunotherapies. Oncotarget. 2014;5:12472–508.

    Google Scholar 

  52. Holubec L, Polivka J Jr, Safanda M, et al. The role of cetuximab in the induction of anticancer immune response in colorectal cancer treatment. Anticancer Res. 2016;36:4421–6.

    CAS  Google Scholar 

  53. Vermorken JB, Herbst RS, Leon X, et al. Overview of the efficacy of cetuximab in recurrent and/or metastatic squamous cell carcinoma of the head and neck in patients who previously failed platinum-based therapies. Cancer. 2008;112:2710–9.

    CAS  Google Scholar 

  54. Roskoski R Jr. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res. 2017;120:116–32.

    CAS  Google Scholar 

  55. Forero-Torres A, Shah J, Wood T, Posey J, Carlisle R, Copigneaux C, et al. Phase I trial of weekly tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5). Cancer Biother Radiopharm 2010/03/02. 2010;25:13–9.

    CAS  Google Scholar 

  56. Harjunpaa A, Junnikkala S, Meri S. Rituximab (anti-CD20) therapy of B-cell lymphomas: direct complement killing is superior to cellular effector mechanisms. Scand J Immunol. 2000;51:634–41.

    CAS  Google Scholar 

  57. Naito K, Takeshita A, Shigeno K, et al. Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia. 2000;14:1436–43.

    CAS  Google Scholar 

  58. Appelbaum FR, Bernstein ID. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood. 2017;130:2373–6.

    CAS  Google Scholar 

  59. Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2014;93:290–6.

    Google Scholar 

  60. Klinger M, Brandl C, Zugmaier G, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119:6226–33.

    CAS  Google Scholar 

  61. Hansson V, Djoseland O, Torgersen O, et al. Hormones and hormonal target cells in the testis. Andrologia. 1976;8:195–202.

    CAS  Google Scholar 

  62. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168:724–40.

    CAS  Google Scholar 

  63. Abbot Bitao Liang, and Tianjian Li (2015).“.” Application no. 14/653,650. S. Chimeric antigen receptors. application US patent, editor. U.S

  64. Fournier C, Martin F, Zitvogel L, et al. Trial Watch: adoptively transferred cells for anticancer immunotherapy. Oncoimmunology. 2017;6:e1363139.

    Google Scholar 

  65. Boyiadzis MM, Dhodapkar MV, Brentjens RJ, Kochenderfer JN, Neelapu SS, Maus MV, et al. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. J Immunother cancer. 2018;6:137.

    Google Scholar 

  66. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377:2545–54.

    CAS  Google Scholar 

  67. Verneris MR, June CH, Myers GD, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    Google Scholar 

  68. Bird L. Calming the cytokine storm. Nat Rev Immunol. 2018;18:417.

    CAS  Google Scholar 

  69. Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24:739–48.

    CAS  Google Scholar 

  70. Giavridis T, van der Stegen SJC, Eyquem J, et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24:731–8.

    CAS  Google Scholar 

  71. Bol KF, Schreibelt G, Gerritsen WR, et al. Dendritic cell-based immunotherapy: state of the art and beyond. Clin Cancer Res. 2016;22:1897–906.

    CAS  Google Scholar 

  72. Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in. J Clin Oncol 2010/12/15. 2011;29:330–6.

    CAS  Google Scholar 

  73. Mayordomo JI, Zorina T, Storkus WJ, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med. 1995;1:1297–302.

    CAS  Google Scholar 

  74. Boczkowski D, Nair SK, Nam JH, et al. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res. 2000;60:1028–34.

    CAS  Google Scholar 

  75. Garg NK, Dwivedi P, Prabha P, et al. RNA pulsed dendritic cells: an approach for cancer immunotherapy. Vaccine. 2013;31:1141–56.

    CAS  Google Scholar 

  76. Irvine AS, Trinder PK, Laughton DL, et al. Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat Biotechnol. 2000;18:1273–8.

    CAS  Google Scholar 

  77. Fields RC, Shimizu K, Mule JJ. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci U S A. 1998;95:9482–7.

    CAS  Google Scholar 

  78. Handy CE, Antonarakis ES. Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol. 2017/12/21. 2018;14:907–17.

    Google Scholar 

  79. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010/09/08. 2010;363:411–22.

    CAS  Google Scholar 

  80. Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009/09/29. 2009;10:1185–92.

    CAS  Google Scholar 

  81. Walker LSK. PD-1 and CTLA4: Ttwo checkpoints, one pathway? Sci Immunol. 2017;2017:2.

    Google Scholar 

  82. Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11:852–63.

    CAS  Google Scholar 

  83. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, et al. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer. 2015/12/10. 2016;52:50–66.

    CAS  Google Scholar 

  84. Barbee MS, Ogunniyi A, Horvat TZ, et al. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. Ann Pharmacother. 2015/05/21. 2015;49:907–37.

    CAS  Google Scholar 

  85. Cabo M, Offringa R, Zitvogel L, et al. Trial Watch: immunostimulatory monoclonal antibodies for oncological indications. Oncoimmunology. 2017;6:e1371896.

    Google Scholar 

  86. Segal NH, He AR, Doi T, Levy R, Bhatia S, Pishvaian MJ, et al. Phase i study of single-agent utomilumab (PF-05082566), a 4-1bb/cd137 agonist, in patients with advanced cancer. Clin Cancer Res. 2018;24:1816–23.

    CAS  Google Scholar 

  87. Caux C, Ramos RN, Prendergast GC, et al. A milestone review on how macrophages affect tumor growth. Cancer Res. 2016;76:6439–42.

    CAS  Google Scholar 

  88. Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol. 2009;86:1065–73.

    CAS  Google Scholar 

  89. Heusinkveld M, van der Burg SH. Identification and manipulation of tumor associated macrophages in human cancers. J Transl Med. 2011;9:216.

    CAS  Google Scholar 

  90. Reinartz S, Schumann T, Finkernagel F, Wortmann A, Jansen JM, Meissner W, et al. Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer 2013/06/21. 2014;134:32–42.

    Google Scholar 

  91. Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ, Cusworth BM, et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 2016;17:651–62.

    CAS  Google Scholar 

  92. Wiehagen KR, Girgis NM, Yamada DH, et al. Combination of CD40 agonism and CSF-1R blockade reconditions tumor-associated macrophages and drives potent antitumor immunity. Cancer Immunol Res. 2017;5:1109–21.

    CAS  Google Scholar 

  93. Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.

    CAS  Google Scholar 

  94. Pyonteck SM, Akkari L, Schuhmacher AJ, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.

    CAS  Google Scholar 

  95. Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11:986–94.

    CAS  Google Scholar 

  96. Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol. 2016;16:177–92.

    CAS  Google Scholar 

  97. Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204:1257–65.

    CAS  Google Scholar 

  98. Allard B, Longhi MS, Robson SC, et al. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev. 2017;276:121–44.

    CAS  Google Scholar 

  99. Bastid J, Regairaz A, Bonnefoy N, et al. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol Res. 2014/11/19. 2015;3:254–65.

    CAS  Google Scholar 

  100. Antonioli L, Yegutkin GG, Pacher P, et al. Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer. 2016;2:95–109.

    Google Scholar 

  101. Sek K, Molck C, Stewart GD, et al. Targeting adenosine receptor signaling in cancer immunotherapy. Int J Mol Sci. 2018;2018:19.

    Google Scholar 

  102. Hatfield SM, Sitkovsky M. A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1alpha driven immunosuppression and improve immunotherapies of cancer. Curr Opin Pharmacol. 2016;29:90–6.

    CAS  Google Scholar 

  103. Belladonna ML, Puccetti P, Orabona C, et al. Immunosuppression via tryptophan catabolism: the role of kynurenine pathway enzymes. Transplantation. 2007/08/19. 2007;84:S17–20.

    CAS  Google Scholar 

  104. Platten M, von Knebel Doeberitz N, Oezen I, et al. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol. 2015/01/30. 2014;5:673.

    Google Scholar 

  105. Liu X, Shin N, Koblish HK, Yang G, Wang Q, Wang K, et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood. 2010/03/04. 2010;115:3520–30.

    CAS  Google Scholar 

  106. Yue EW, Douty B, Wayland B, et al. Discovery of potent competitive inhibitors of indoleamine 2,3-dioxygenase with in vivo pharmacodynamic activity and efficacy in a mouse melanoma model. J Med Chem. 2009;52:7364–7.

    CAS  Google Scholar 

  107. Banerjee T, Duhadaway JB, Gaspari P, et al. A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. Oncogene. 2008;27:2851–7.

    CAS  Google Scholar 

  108. Prendergast GC, Malachowski WP, DuHadaway JB, et al. Discovery of IDO1 inhibitors: from bench to bedside. Cancer Res. 2017;77:6795–811.

    CAS  Google Scholar 

  109. Long GV, Dummer R, Hamid O, Gajewski T, Caglevic C, Dalle S, et al. Epacadostat (E) plus pembrolizumab (P) versus pembrolizumab alone in patients (pts) with unresectable or metastatic melanoma: results of the phase 3 ECHO-301/KEYNOTE-252 study. J Clin Oncol. 2018;36:108.

    Google Scholar 

  110. Labadie BW, Bao R, Luke JJ. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan–kynurenine–aryl hydrocarbon axis. Clin Cancer Res. 2019;25:1462–71.

    CAS  Google Scholar 

  111. Bonifaz L, Bonnyay D, Mahnke K, et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196:1627–38.

    CAS  Google Scholar 

  112. Schreibelt G, Klinkenberg LJ, Cruz LJ, et al. The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood. 2012;119:2284–92.

    CAS  Google Scholar 

  113. Pitt JM, Andre F, Amigorena S, et al. Dendritic cell-derived exosomes for cancer therapy. J Clin Invest. 2016;126:1224–32.

    Google Scholar 

  114. Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005;3:10.

    Google Scholar 

  115. Tacken PJ, de Vries IJ, Torensma R, et al. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol. 2007;7:790–802.

    CAS  Google Scholar 

  116. Stylianopoulos T, Poh MZ, Insin N, Bawendi MG, Fukumura D, Munn LL, et al. Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J. 2010;99:1342–9.

    CAS  Google Scholar 

  117. Martino MM, Hubbell JA. The 12th-14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J. 2010;24:4711–21.

    CAS  Google Scholar 

  118. Wijelath ES, Rahman S, Namekata M, Murray J, Nishimura T, Mostafavi-Pour Z, et al. Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res. 2006;99:853–60.

    CAS  Google Scholar 

  119. Martino MM, Tortelli F, Mochizuki M, et al. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med. 2011;3:100ra89.

    Google Scholar 

  120. Martino MM, Briquez PS, Güç E, et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science (80-). 2014;343:885–8.

    CAS  Google Scholar 

  121. Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends in Cancer. 2018;4:292–319.

    CAS  Google Scholar 

  122. Li H-J, Zhang Y-R, Wang J, et al. Strategies to improve tumor penetration of nanomedicines through nanoparticle design. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;11:e1519.

    Google Scholar 

  123. Singha NC, Nekoroski T, Zhao C, Symons R, Jiang P, Frost GI, et al. Tumor-associated hyaluronan limits efficacy of monoclonal antibody therapy. Mol Cancer Ther. 2015;14:523–32.

    CAS  Google Scholar 

  124. Connor RJ, Bookbinder LH, Shepard HM, et al. Enzymatic depletion of tumor hyaluronan induces antitumor responses in preclinical animal models. Mol Cancer Ther. 2010;9:3052–64.

    Google Scholar 

  125. Thompson CB, Clift R, Rosengren S, et al. Increasing tumor-infiltrating CD8+ T cell response and checkpoint inhibitor efficacy by enzymatic reduction of tumor hyaluronan in a murine syngeneic pancreatic cancer model, In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunothe. Cancer Immunol. Res. 2018;6:Abstract nr B38.

  126. Doherty GJ, Tempero M, Corrie PG. HALO-109-301: a phase III trial of PEGPH20 (with gemcitabine and nab-paclitaxel) in hyaluronic acid-high stage IV pancreatic cancer. Future Oncol. 2018;14:13–22.

    CAS  Google Scholar 

  127. Berdov BA, Korn R, Holcombe RF, et al. Phase Ib study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res. 2016;22:2848–54.

    Google Scholar 

  128. Rosen LS, Ramanathan RK, LoRusso P, et al. Phase 1 trials of PEGylated recombinant human hyaluronidase PH20 in patients with advanced solid tumours. Br J Cancer. 2017;118:153–61.

    Google Scholar 

  129. Phase 1b open-label study of PEGylated recombinant human hyaluronidase (PEGPH20) with pembrolizumab. Available from: https://clinicaltrials.gov/ct2/show/NCT02563548; U.S. National Library of Medicine, ClinicalTrials.gov.

  130. Alwan LM, Grossmann K, Sageser D, van Atta J, Agarwal N, Gilreath JA. Comparison of acute toxicity and mortality after two different dosing regimens of high-dose interleukin-2 for patients with metastatic melanoma. Target Oncol. 2014;9:63–71.

    Google Scholar 

  131. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    Google Scholar 

  132. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372:2521–32.

    CAS  Google Scholar 

  133. Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. 2016;13:473–86.

    CAS  Google Scholar 

  134. Milling L, Zhang Y, Irvine JD. Delivering safer immunotherapies for cancer. Adv Drug Deliv Rev. 2017;22:194–213.

    Google Scholar 

  135. Niu L, Strahotin S, Hewes B, Zhang B, Zhang Y, Archer D, et al. Cytokine-mediated disruption of lymphocyte trafficking, hemopoiesis, and induction of lymphopenia, anemia, and thrombocytopenia in anti-CD137-treated mice. J Immunol. 2007;178:4194–213.

    CAS  Google Scholar 

  136. Marabelle A, Kohrt H, Caux C, Levy R. Intratumoral immunization: a new paradigm for cancer therapy. Clin Cancer Res. 2014;20:1747–56.

    CAS  Google Scholar 

  137. Weide B, Eigentler TK, Pflugfelder A, Zelba H, Martens A, Pawelec G, et al. Intralesional treatment of stage III metastatic melanoma patients with L19-IL2 results in sustained clinical and systemic immunologic responses. Cancer Immunol Res. 2014;2:668–78.

    CAS  Google Scholar 

  138. Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA, et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 2010;70:875–82.

    CAS  Google Scholar 

  139. Fransen MF, Sluijter M, Morreau H, Arens R, Melief CJM. Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody. Clin Cancer Res. 2011;17:2270–80.

    CAS  Google Scholar 

  140. Van Herpen CM, Huijbens R, Looman M, et al. Pharmacokinetics and immunological aspects of a phase Ib study with intratumoral administration of recombinant human interleukin-12 in patients with head and neck squamous cell carcinoma: a decrease of T-bet in peripheral blood mononuclear cells. Clin Cancer Res. 2003;9:2950–6.

    Google Scholar 

  141. Moritz T, Niederle N, Baumann J, May D, Kurschel E, Osieka R, et al. Phase I study of recombinant human tumor necrosis factor α in advanced malignant disease. Cancer Immunol Immunother. 1989;29:144–50.

    CAS  Google Scholar 

  142. Bartsch HH, Pfizenmaier K, Schroeder M, Nagel GA. Intralesional application of recombinant human tumor necrosis factor alpha induces local tumor regression in patients with advanced malignancies. Eur J Cancer Clin Oncol. 1989;25:287–91.

    CAS  Google Scholar 

  143. Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev. 2009;61:195–204.

    CAS  Google Scholar 

  144. **a Y, Gupta GK, Castano AP, Mroz P. Pinar Avci and MRH. CpG oligodeoxynucleotide as immune adjuvant enhances photodynamic therapy response in murine metastatic breast cancer. J Biophotonics. 2014;7:897–905.

    CAS  Google Scholar 

  145. Nierkens S, den Brok MH, Roelofsen T, Wagenaars JAL, Figdor CG, Ruers TJ, et al. Route of administration of the TLR9 agonist CpG critically determines the efficacy of cancer immunotherapy in mice. PLoS One. 2009;4:e8368.

    Google Scholar 

  146. Liu H, Kwong B, Irvine DJ. Membrane anchored immunostimulatory oligonucleotides for in vivo cell modification and localized immunotherapy. Angew Chem Int Ed. 2011;50:7052–5.

    CAS  Google Scholar 

  147. Kwong B, Liu H, Irvine DJ. Induction of potent anti-tumor responses while eliminating systemic side effects via liposome-anchored combinatorial immunotherapy. Biomaterials. 2011;32:5134–47.

    CAS  Google Scholar 

  148. McHugh RS, Nagarajan S, Wang YC, Sell KW, Selvaraj P. Protein transfer of glycosyl-phosphatidylinositol-B7-1 into tumor cell membranes: a novel approach to tumor immunotherapy. Cancer Res. 1999;59:2433–7.

    CAS  Google Scholar 

  149. Liu S, Breiter DR, Zheng G, Chen A. Enhanced antitumor responses elicited by combinatorial protein transfer of chemotactic and costimulatory molecules. J Immunol. 2007;178:3301–6.

    CAS  Google Scholar 

  150. Zheng G, Chen A, Sterner RE, Zhang PJ, Pan T, Kiyatkin N, et al. Induction of antitumor immunity via intratumoral tetra-costimulator protein transfer. Cancer Res. 2001;61:8127–34.

    CAS  Google Scholar 

  151. Hudak JE, Canham SM, Bertozzi CR. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat Chem Biol. 2014;10:69–75.

    CAS  Google Scholar 

  152. **ao H, Woods EC, Vukojicic P, Bertozzi CR. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc Natl Acad Sci. 2016;113:10304–9.

    CAS  Google Scholar 

  153. Kwong B, Gai SA, Elkhader J, Wittrup KD, Irvine DJ. Localized immunotherapy via liposome-anchored anti-CD137 + IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res. 2013;73:1547–58.

    CAS  Google Scholar 

  154. Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol. 1995;13:688–96.

    CAS  Google Scholar 

  155. Dubrot J, Milheiro F, Alfaro C, Palazón A, Martinez-Forero I, Perez-Gracia JL, et al. Treatment with anti-CD137 mAbs causes intense accumulations of liver T cells without selective antitumor immunotherapeutic effects in this organ. Cancer Immunol Immunother. 2010;59:1223–33.

    CAS  Google Scholar 

  156. Broaders KE, Cohen JA, Beaudette TT, Bachelder EM, Frechet JMJ. Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy. Proc Natl Acad Sci. 2009;106:5497–502.

    CAS  Google Scholar 

  157. Munn DH, Mellor AL. The tumor-draining lymph node as an immune-privileged site. Immunol Rev. 2006;213:146–58.

    Google Scholar 

  158. van Mierlo GJD, Boonman ZFHM, Dumortier HMH, den Boer AT, Fransen MF, Nouta J, et al. Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. J Immunol. 2004;173:6753–9.

    Google Scholar 

  159. Kourtis IC, Hirosue S, de Titta A, Kontos S, Stegmann T, Hubbell JA, et al. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice. PLoS One. 2013;8:e61646.

    CAS  Google Scholar 

  160. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly (propylene sulfide) nanoparticles. J Control Release. 2006;112:26–34.

    CAS  Google Scholar 

  161. Thomas SN, Vokali E, Lund AW, Hubbell JA, Swartz MA. Targeting the tumor-draining lymph node with adjuvanted nanoparticles reshapes the anti-tumor immune response. Biomaterials. 2014;35:814–24.

    CAS  Google Scholar 

  162. Zwiorek K, Bourquin C, Battiany J, Winter G, Endres S, Hartmann G, et al. Delivery by cationic gelatin nanoparticles strongly increases the immunostimulatory effects of CpG oligonucleotides. Pharm Res. 2008;25:551–62.

    CAS  Google Scholar 

  163. Bourquin C, Anz D, Zwiorek K, Lanz AL, Fuchs S, Weigel S, et al. Targeting CpG oligonucleotides to the lymph node by nanoparticles elicits efficient antitumoral immunity. J Immunol. 2008;181:2990–8.

    CAS  Google Scholar 

  164. Andorko JI, Jewell CM. Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioeng Transl Med. 2017;2:139–55.

    Google Scholar 

  165. Padmakumar S, Paul-Prasanth B, Pavithran K, Vijaykumar DK, Rajanbabu A, Sivanarayanan TB, et al. Long-term drug delivery using implantable electrospun woven polymeric nanotextiles. Nanomed Nanotechnol, Biol. Med. 2019;15:274–84.

    CAS  Google Scholar 

  166. Monette A, Ceccaldi C, Assaad E, Lerouge S, Lapointe R. Chitosan thermogels for local expansion and delivery of tumor-specific T lymphocytes towards enhanced cancer immunotherapies. Biomaterials. 2016;75:237–49.

    CAS  Google Scholar 

  167. Madhanagopal BR, Zhang S, Demirel E, Wady H, Chandrasekaran AR. DNA nanocarriers: programmed to deliver. Trends Biochem Sci. 2018;43:997–1013.

    CAS  Google Scholar 

  168. Wang J, Hu X, **ang D. Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines. Drug Deliv. 2018;25:1319–27.

    CAS  Google Scholar 

  169. Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, et al. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+T cell-mediated anti-tumor immunity. Vaccine. 2008;26:5046–57.

    CAS  Google Scholar 

  170. Cheung AS, Koshy ST, Stafford AG, et al. Adjuvant-loaded subcellular vesicles derived from disrupted cancer cells for cancer vaccination. Small. 2016;12:2321–33.

    CAS  Google Scholar 

  171. Lu J, Liu X, Liao YP, et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat Commun. 2017;8:1811.

    Google Scholar 

  172. Hansel TT, Kropshofer H, Singer T, et al. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9:325–38.

    CAS  Google Scholar 

  173. Shahbazi M-A, Shrestha N, Mäkilä E, et al. A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Res. 2014;8:1505–21.

    Google Scholar 

  174. Wang C, Ye Y, Hochu GM, et al. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 2016;16:2334–40.

    CAS  Google Scholar 

  175. Shahbazi MA, Fernandez TD, Makila EM, et al. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials. 2014;35:9224–35.

    CAS  Google Scholar 

  176. Wang C, Wang J, Zhang X, et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci Transl Med. 2018;10:1–13.

    Google Scholar 

  177. Li SY, Liu Y, Xu CF, et al. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J Control Release. 2016;231:17–28.

    CAS  Google Scholar 

  178. Hobo W, Novobrantseva TI, Fredrix H, et al. Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation. Cancer Immunol Immunother. 2012/08/21. 2013;62:285–97.

    CAS  Google Scholar 

  179. Verma V, Kim Y, Lee M-C, Lee JT, Cho S, Park IK, et al. Activated dendritic cells delivered in tissue compatible biomatrices induce in-situ anti-tumor CTL responses leading to tumor regression. Oncotarget. 2016;7:39894–906.

    Google Scholar 

  180. Ali OA, Huebsch N, Cao L, Dranoff G, Mooney DJ. Infection-mimicking materials to program dendritic cells in situ. Nat Mater. 2009;8:151–8.

    CAS  Google Scholar 

  181. Ali OA, Emerich D, Dranoff G, et al. In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci Transl Med. 2009;1:22–8.

    Google Scholar 

  182. Almand B, Resser JR, Lindman B, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000;6:1755–66.

    CAS  Google Scholar 

  183. Zemon H. An artificial solution for adoptive immunotherapy. Trends Biotechnol. 2003;21:418–20.

    CAS  Google Scholar 

  184. Perica K, Tu A, Richter A, Bieler JG, Edidin M, Schneck JP. Magnetic field-induced t cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano. 2014;8:2252–60.

    CAS  Google Scholar 

  185. Cheung AS, Zhang DKY, Koshy ST, Mooney DJ. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T-cells. Nat Biotechnol. 2018;36:160–9.

    CAS  Google Scholar 

  186. Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. Therapeutic cell engineering using surface-conjugated synthetic nanoparticles. Nat Med. 2010;16:1035–41.

    CAS  Google Scholar 

  187. Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat Biotechnol. 2015;33:97–101.

    CAS  Google Scholar 

  188. Su MJ, Aldawsari H, Amiji M. Pancreatic cancer cell exosome-mediated macrophage reprogramming and the role of MicroRNAs 155 and 125b2 transfection using nanoparticle delivery systems. Sci Rep. 2016;6:1–15.

    CAS  Google Scholar 

  189. Zhu S, Niu M, O’Mary H, Cui Z. Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm. 2013;10:3525–30.

    CAS  Google Scholar 

  190. Ganesh S, Iyer AK, Morrissey DV, et al. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials. 2013;34:3489–502.

    CAS  Google Scholar 

  191. Parayath NN, Parikh A, Amiji MM. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating microRNA-125b. Nano Lett. 2018;18:3571–9.

    CAS  Google Scholar 

  192. Chen Y, **a R, Huang Y, et al. An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat Commun. 2016;7:13443.

    CAS  Google Scholar 

Download references

Acknowledgments

SP acknowledges Department of Science & Technology DST-INSPIRE, Government of India for her Senior Research Fellowship and the additional funding from Department of Biotechnology, Government of India through Pilot Project Grants, Program for Young Investigators in Cancer Biology. She also acknowledges Amrita Vishwa Vidyapeetham for PhD Scholar’s Fellowship (2017) and the infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deepthy Menon or Mansoor M. Amiji.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submission for the Special Issue of the journal “Regenerative Engineering and Translational Medicine” as a tribute to Professor Robert Langer on his 70th Birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parayath, N., Padmakumar, S., Nair, S.V. et al. Strategies for Targeting Cancer Immunotherapy Through Modulation of the Tumor Microenvironment. Regen. Eng. Transl. Med. 6, 29–49 (2020). https://doi.org/10.1007/s40883-019-00113-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-019-00113-6

Keywords

Navigation