Nanotechnology and Immunomodulators in Cancer

  • Chapter
  • First Online:
Immunomodulators and Human Health

Abstract

In the last years, immunotherapy represents a promising strategy for treatment in cancer without massive damaging normal cells, by reprogramming and activating antitumor immunity. However, the adverse events of immunotherapy related to the low specificity in tumor cell targeting represent limits of immunotherapy efficacy. In this regard, nanotechnologies implemented in medicine can represent new opportunities to deliver different immunotherapeutic drugs with high responses and low side effects for specific tumors. The potential of nanotechnologies is represented by the possibilities of carrying immunotherapeutic agents by nanoparticles with various material types, with different shapes, sizes, coated ligands, loading method, hydrophilicity, elasticity, and biocompatibility.

In this review are summarized different types of cancer immunotherapy already approved for cancer treatment or currently studied in clinical trials, which can be possibly correlated with nanotechnologies. Also, the immune-editing process, nanoparticles design strategy in cancer immunotherapy, and types of most promising nanoparticles, including lipid nanocarriers, dendrimers, polymeric and inorganic nanoparticles, magnetosomes, virus-like particles, and carbon nanomaterials, will be discussed. The influences of nanoparticles on enhancing the efficacy of immunotherapeutics in cancer and nanoparticle mediation of immune chemotherapy or combination of immunotherapy with other medical procedures are presented also. Various immune regulation mechanisms were described, revealing a complex network consisting of different immune cells, which can be engineered to work cooperatively to destroy tumor cells, taking account of the metabolic status of cancer cells and immunosuppressive tumor microenvironment (TME) as factors that influence immunomodulation using nanosystems. Furthermore, the possibilities of nanotechnologies to influence the local immune tolerance and many steps of the metastatic cascade process are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Diab A, Tannir NM, Bentebibel SE, Hwu P, Papadimitrakopoulou V, Haymaker C, Kluger HM, Gettinger SN, Sznol M, Tykodi SS, Curti BD, Tagliaferri MA, Zalevsky J, Hannah AL, Hoch U, Aung S, Fanton C, Rizwan A, Iacucci E, Liao Y, Bernatchez C, Hurwitz ME, Cho DC (2020) Bempegaldesleukin (NKTR-214) plus Nivolumab in patients with advanced solid tumors: phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discov 10(8):1158–1173

    Article  CAS  PubMed  Google Scholar 

  • Ailincai D, Dorobanțu AM, Dima B, Irimiciuc ȘA, Lupașcu C, Agop M, Olguta O (2020) Poly(vinyl alcohol boric acid)-diclofenac sodium salt drug delivery systems: experimental and theoretical studies. J Immunol Res 2020:1–14

    Article  CAS  Google Scholar 

  • Agop M, Merches I (2019) Operational procedures describing physical systems. Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  • Agop M, Paun VP (2017) On the new perspectives of fractal theory. Fundaments and applications. Romanian Academy Publishing House, Bucharest

    Google Scholar 

  • Ai L, Xu A, Xu J (2020) Roles of PD-1/PD-L1 pathway. Signalling, cancer and beyond in regulation of cancer immune checkpoints. Molecular and cellular mechanisms and therapy. Springer, Singapore, pp 63–81

    Google Scholar 

  • Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, Wilkerson MD, Fecci PE, Butaney M, Reibel JB, Soucheray M, Cohoon TJ, Janne PA, Meyerson M, Hayes DN, Shapiro GI, Shimamura T, Sholl LM, Rodig SJ, Freeman GJ, Hammerman PS, Dranoff G, Wong KK (2013) Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 3(12):1355–1363

    Article  CAS  PubMed  Google Scholar 

  • Andtbacka RHI, Collichio F, Harrington KJ, Middleton MR, Downey G, Ӧhrling K, Kaufman HL (2019) Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer 7(1):145

    Article  PubMed  PubMed Central  Google Scholar 

  • Angell H, Galon J (2013) From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr Opin Immunol 25(2):261–267

    Article  CAS  PubMed  Google Scholar 

  • Angelova M, Mlecnik B, Vasaturo A, Bindea G, Fredriksen T, Lafontaine L, Buttard B, Morgand E, Bruni D, Jouret-Mourin A, Hubert C, Kartheuser A, Humblet Y, Ceccarelli M, Syed N, Marincola FM, Bedognetti D, Van den Eynde M, Galon J (2018) Evolution of metastases in space and time under immune selection. Cell 175(3):751–765.e16. https://doi.org/10.1016/j.cell.2018.09.018

    Article  CAS  PubMed  Google Scholar 

  • Atsaves V, Tsesmetzis N, Chioureas D, Kis L, Leventaki V, Drakos E, Panaretakis T, Grander D, Medeiros LJ, Young KH, Rassidakis GZ (2017) PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia 31(7):1633–1637

    Article  CAS  PubMed  Google Scholar 

  • Avanzi MP, Yeku O, Li X, Wijewarnasuriya DP, van Leeuwen DG, Cheung K, Park H, Purdon TJ, Daniyan AF, Spitzer MH, Brentjens RJ (2018) Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep 23:2130–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L (2008) B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111(7):3635–3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai J, Gao Z, Li X, Dong L, Han W, Nie J (2017) Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade. Oncotarget 8(66):110,693–110,707

    Article  Google Scholar 

  • Bandyopadhyay A, Fine RL (2011) The impact of nanoparticle ligand density on dendritic-cell targeted vaccines. Biomaterials 32:3094–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee H, Kane LP (2018) Immune regulation by Tim-3. F1000Res 7:316. https://doi.org/10.12688/f1000research.13446.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett DM, Grupp SA, June CH (2015) Chimeric antigen receptor- and TCR-modified T cells enter main street and wall street. J Immunol 195(3):755–761

    Article  CAS  PubMed  Google Scholar 

  • Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A, Ploix S, Vimond N, Peguillet I, Théry C, Lacroix L, Zoernig I, Dhodapkar K, Dhodapkar M, Viaud S, Soria JC, Reiners KS, Pogge von Strandmann E, Vély F, Rusakiewicz S, Eggermont A, Pitt JM, Zitvogel L, Chaput N (2015) Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Onco Targets Ther 5(4):e1071008. https://doi.org/10.1080/2162402X.2015.1071008

    Article  CAS  Google Scholar 

  • Blake SJ, Dougall WC, Miles JJ, Teng MW, Smyth MJ (2016) Molecular pathways: targeting CD96 and TIGIT for cancer immunotherapy. Clin Cancer Res 22(21):5183–5188

    Article  CAS  PubMed  Google Scholar 

  • Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T, Gajewski TF (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64:1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Bonvalot S, Rutkowski PL, Thariat J, Carrère S, Ducassou A, Sunyach MP, Agoston P, Hong A, Mervoyer A, Rastrelli M, Moreno V, Li RK, Tiangco B, Herraez AC, Gronchi A, Mangel L, Sy-Ortin T, Hohenberger P, de Baère T, Le Cesne A, Helfre S, Saada-Bouzid E, Borkowska A, Anghel R, Co A, Gebhart M, Kantor G, Montero A, Loong HH, Vergés R, Lapeire L, Dema S, Kacso G, Austen L, Moureau-Zabotto L, Servois V, Wardelmann E, Terrier P, Lazar AJ, Bovée JVMG, Le Péchoux C, Papai Z (2019) NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (act.In.Sarc): a multicentre, phase 2-3, randomised, controlled trial. Lancet Oncol 20(8):1148–1159

    Article  CAS  PubMed  Google Scholar 

  • Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Arén Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocker T, Karjalainen K (1995) Signals through T cell receptor zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med 181:1653–1659

    Article  CAS  PubMed  Google Scholar 

  • Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 39(1):98–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulbake U, Doppalapudi S, Kommineni N, Khan W (2017) Liposomal formulations in clinical use: an updated review. Pharmaceutics 9(2):E12. https://doi.org/10.3390/pharmaceutics9020012

    Article  CAS  PubMed  Google Scholar 

  • Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27(1):111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, Cova A, Canese R, Jachetti E, Rossetti M, Huber V, Parmiani G, Generoso L, Santinami M, Borghi M, Fais S, Bellone M, Rivoltini L (2012) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72(11):2746–2756

    Article  CAS  PubMed  Google Scholar 

  • Campbell RB, Fukumura D, Brown EB, Mazzola LM, Izumi Y, Jain RK, Torchilin VP, Munn LL (2002) Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res 62:6831–6836

    CAS  PubMed  Google Scholar 

  • Camus M, Tosolini M, Mlecnik B, Pagès F, Kirilovsky A, Berger A, Costes A, Bindea G, Charoentong P, Bruneval P, Trajanoski Z, Fridman WH, Galon J (2009) Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res 69(6):2685–2693

    Article  CAS  PubMed  Google Scholar 

  • Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodriguez F, Camacho FM, Real LM, Garrido F, Cabrera T (2008) Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics 60(8):439–447

    Article  CAS  PubMed  Google Scholar 

  • Cartan E (1951) La Theorie de Groupes Finis et Continus et la Geometrie Differentiele Traitees par la Methode du Repere Mobile. Gauthier-Villars, Paris, France

    Google Scholar 

  • Cebula A, Seweryn M, Rempala GA, Pabla SS, McIndoe RA, Denning TL, Bry L, Kraj P, Kisielow P, Ignatowicz L (2013) Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 497:258–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang DK, Sui J, Geng S, Muvaffak A, Bai M, Fuhlbrigge RC, Lo A, Yammanuru A, Hubbard L, Sheehan J, Campbell JJ, Zhu Q, Kupper TS, Marasco WA (2012) Humanization of an anti-CCR4 antibody that kills cutaneous T-cell lymphoma cells and abrogates suppression by T-regulatory cells. Mol Cancer Ther 11(11):2451–2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanmee T, Ontong P, Konno K et al (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6(3):1670–1690

    Article  Google Scholar 

  • Chauhan VP, Chen IX, Tong R, Itano N (2019) Reprogramming the microenvironment with tumor-selective angiotensin blockers enhances cancer immunotherapy. Proc Natl Acad Sci U S A 116(22):10,674–10,680

    Article  CAS  Google Scholar 

  • Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330

    Article  CAS  PubMed  Google Scholar 

  • Chen IX, Chauhan VP, Posada J, Ng MR, Wu MW, Adstamongkonkul P, Huang P, Lindeman N, Langer R, Jain RK (2019a) Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc Natl Acad Sci U S A 116(10):4558–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, Wang J, Wen D, Zhang Y, Lu Y, Yang G, Jiang C, Wang J, Dotti G, Gu Z (2019b) In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol 14(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • Chen YS, Lin EY, Chiou TW, Harn HJ (2019c) Exosomes in clinical trial and their production in compliance with good manufacturing practice. Ci Ji Yi Xue Za Zhi 32(2):113–120

    PubMed  Google Scholar 

  • Cheng K, Ding Y, Zhao Y, Ye S, Zhao X, Zhang Y, Ji T, Wu H, Wang B, Anderson GJ, Ren L, Nie G (2018) Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy. Nano Lett 18(5):3250–3258

    Article  CAS  PubMed  Google Scholar 

  • Chester C, Sanmamed MF, Wang J, Melero I (2018) Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 131(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Colombo M, Raposo G, Théry C (2014) Biogenesis secretion and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  • Colzani B, Pandolfi L, Hoti A, Iovene PA, Natalello A, Avvakumova S, Colombo M, Prosperi D (2018) Investigation of antitumor activities of trastuzumab delivered by PLGA nanoparticles. Int J Nanomedicine 13:957–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon KC, Miljkovic MD, Waldmann TA (2019) Cytokines in the treatment of cancer. J Interf Cytokine Res 39(1):6–21

    Article  CAS  Google Scholar 

  • Croissant JG, Fatieiev Y, Khashab NM (2017) Degradability and clearance of silicon, Organosilica, Silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater 29(9). https://doi.org/10.1002/adma.201604634

  • Cruz LJ, Rosalia RA, Kleinovink JW, Rueda F, Löwik CW, Ossendorp F (2014) Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J Control Release 192:209–218

    Article  CAS  PubMed  Google Scholar 

  • Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R, Figdor CG (2010) Targeted PLGA nano-but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 144:118–126

    Article  CAS  PubMed  Google Scholar 

  • Das M, Zhu C, Kuchroo VK (2017) Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 276(1):97–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37

    Article  PubMed  CAS  Google Scholar 

  • DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9(4):212. https://doi.org/10.1186/bcr1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du W, Yang M, Turner A, Xu C, Ferris RL, Huang J, Kane LP, Lu B (2017) TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci 18(3):645

    Article  PubMed Central  CAS  Google Scholar 

  • Duan X, Chan C, Guo N, Han W, Weichselbaum RR, Lin W (2016) Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J Am Chem Soc 138(51):16,686–16,695

    Article  CAS  Google Scholar 

  • Duan X, Chan C, Lin W (2019) Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew Chem Int Ed Engl 58(3):670–680

    Article  CAS  PubMed  Google Scholar 

  • Dummer R, Gyorki DE, Hyngstrom JR, Berger AC, Conry RM, Demidov LV, Sharma A, Treichel S, Faries MB, Ross M (2019) One-year (yr) recurrence-free survival (RFS) from a randomized, open label phase II study of neoadjuvant (neo) talimogene laherparepvec (T-VEC) plus surgery (surgx) versus surgx for resectable stage IIIB-IVM1a melanoma (MEL). J Clin Oncol 37(15):9520–9520

    Article  Google Scholar 

  • Dunn GP, Bruce AT, Sheehan KC, Shankaran V, Uppaluri R, Bui JD, Diamond MS, Koebel CM, Arthur C, White JM, Schreiber RD (2005) A critical function for type I interferons in cancer Immunoediting. Nat Immunol 6(7):722–729

    Article  CAS  PubMed  Google Scholar 

  • Dykman LA, Staroverov SA, Fomin AS, Khanadeev VA, Khlebtsov BN, Bogatyrev VA (2018) Gold nanoparticles as an adjuvant: Influence of size, shape, and technique of combination with CpG on antibody production. Int Immunopharmacol 54:163–168

    Article  CAS  PubMed  Google Scholar 

  • Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, Tan TG, Zheng L, Ong LC, ** Y, Kato M, Prévost-Blondel A, Chow P, Yang H, Abastado JP (2010) Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest 120:2030. https://doi.org/10.1172/JCI42002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Moon JJ (2015) Nanoparticle drug delivery systems designed to improve cancer vaccines and immunotherapy. Vaccines (Basel) 3(3):662–685

    Article  CAS  Google Scholar 

  • Fares CM, Van Allen EM, Drake CG, Allison JP, Hu-Lieskovan S (2019) Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients ? Am Soc Clin Oncol Educ Book 39:147–164

    Article  PubMed  Google Scholar 

  • Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20

    Article  CAS  PubMed  Google Scholar 

  • Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, Teichmann SA, Janowitz T, Jodrell DI, Tuveson DA, Fearon DT (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 110(50):20,212–20,217

    Article  CAS  Google Scholar 

  • Finney HM, Akbar AN, Lawson ADG (2004) Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain. J Immunol 172:104–113

    Article  CAS  PubMed  Google Scholar 

  • Fontana F, Liu D, Hirvonen J., Santos H.A. (2017). Delivery of therapeutics with nanoparticles: What’s new in cancer immunotherapy? Wiley interdisciplinary reviews. Nanomed Nanobiotechnol, 9, e1421. doi: https://doi.org/10.1002/wnan.1421

  • Fountzilas C, Patel S, Mahalingam D (2017) Review: oncolytic virotherapy, updates and future directions. Oncotarget 8(20):102,617–102,639

    Article  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fried I, Lossos A, Ben Ami T, Dvir R, Toledano H, Ben Arush MW, Postovski S, Abu Kuidar A, Yalon M, Weintraub M, Benifla M (2018) Preliminary results of immune modulating antibody MDV9300 (pidilizumab) treatment in children with diffuse intrinsic pontine glioma. J Neuro-Oncol 136(1):189–195

    Article  CAS  Google Scholar 

  • Fu Y, Lin Q, Zhang Z, Zhang L (2020) Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B 10(3):414–433

    Article  CAS  PubMed  Google Scholar 

  • Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK (2018) Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol 15(5):325–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26

    Article  CAS  PubMed  Google Scholar 

  • Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18(3):197–218

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos NT, ProYtt JL, Blair GE (2000) Transcriptional regulation of the major histocompatibility complex (MHC) class I heavy chain, TAP1 and LMP2 genes by the human papillomavirus (HPV) type 6b, 16 and 18 E7 oncoproteins. Oncogene 19(42):4930–4935

    Article  CAS  PubMed  Google Scholar 

  • Gil M, Komorowski MP, Seshadri M, Rokita H, McGray AJ, Opyrchal M, Odunsi KO, Kozbor D (2014) CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol 193(10):5327–5337

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MS (2015) Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell 161(2):201–204

    Article  CAS  PubMed  Google Scholar 

  • Gong B, Kiyotani K, Sakata S, Nagano S, Kumehara S, Baba S, Besse B, Yanagitani N, Friboulet L, Nishio M, Takeuchi K, Kawamoto H, Fujita N, Katayama R (2019) Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J Exp Med 216(4):982–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, Szczepaniak Sloane R, Galloway-Pena J, Jiang H, Chen PL, Shpall EJ, Rezvani K, Alousi AM, Chemaly RF, Shelburne S, Vence LM, Okhuysen PC, Jensen VB, Swennes AG, McAllister F, Marcelo Riquelme Sanchez E, Zhang Y, Le Chatelier E, Zitvogel L, Pons N, Austin-Breneman JL, Haydu LE, Burton EM, Gardner JM, Sirmans E, Hu J, Lazar AJ, Tsujikawa T, Diab A, Tawbi H, Glitza IC, Hwu WJ, Patel SP, Woodman SE, Amaria RN, Davies MA, Gershenwald JE, Hwu P, Lee JE, Zhang J, Coussens LM, Cooper ZA, Futreal PA, Daniel CR, Ajami NJ, Petrosino JF, Tetzlaff MT, Sharma P, Allison JP, Jenq RR, Wargo JA (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359:97–103

    Article  CAS  PubMed  Google Scholar 

  • Gray-Owen SD, Blumberg RS (2006) CEACAM1: contact-dependent control of immunity. Nat Rev Immunol 6(6):433–446

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi AM, Incoronato M, Salvatore M, Soricelli A (2017) Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics. Nanomedicine (Lond) 12(19):2349–2365

    Article  CAS  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo HC, Feng XM, Sun SQ, Wei YQ, Sun DH, Liu XT, Liu ZX, Luo JX, Yin H (2012) Immunization of mice by hollow mesoporous silica nanoparticles as carriers of porcine circovirus type 2 ORF2 protein. Virol J 9:108. https://doi.org/10.1186/1743-422X-9-108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo ZS, Liu Z, Bartlett DL (2014) Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol 4:74. https://doi.org/10.3389/fonc.2014.00074

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Yadav BS, Kesharwani R, Mishra KP, Singh NK (2014) The role of nanodrugs for targeted drug delivery in cancer treatment. Arch Apll Sci Res 2(1):37–51

    Google Scholar 

  • Hamid O, Schmidt H, Nissan A, Ridolfi L, Aamdal S, Hansson J, Guida M, Hyams DM, Gómez H, Bastholt L, Chasalow SD, Berman D (2011) A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 9:204. https://doi.org/10.1186/1479-5876-9-204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammink R, Mandal S, Eggermont LJ, Nooteboom M, Willems PH, Tel J, Rowan AE, Figdor CG, Blank KG (2017) Controlling T-cell activation with synthetic dendritic cells using the multivalency effect. ACS Omega 2(3):937–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haslam A, Prasad V (2019) Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw Open 2(5):e192535. https://doi.org/10.1001/jamanetworkopen.2019.2535

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan HA, Smyth L, Wang JT, Costa PM, Ratnasothy K, Diebold SS, Lombardi G, Al-Jamal KT (2016) Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials 104:310–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatfield SM, Kjaergaard J, Lukashev D, Schreiber TH, Belikoff B, Abbott R, Sethumadhavan S, Philbrook P, Ko K, Cannici R, Thayer M, Rodig S, Kutok JL, Jackson EK, Karger B, Podack ER, Ohta A, Sitkovsky MV (2015) Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 7(277):277ra30. https://doi.org/10.1126/scitranslmed.aaa1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht JR, Naing A, Falchook GS, Patel MR, Infante JR, Aljumaily R, Deborah JL, Wong DJL, Autio KA, Zev A, Wainberg ZA, Milind M, Javle MM, Bendell JC, Pant S, Hung A, Vlasselaer P, Leveque J, Oft M (2018) Papadopoulos KP (2018) Overall survival of PEGylated human IL-10 (AM0010) with 5-FU/LV and oxaliplatin (FOLFOX) in metastatic pancreatic adenocarcinoma (PDAC). J Clin Oncol 36:374

    Article  Google Scholar 

  • Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, Thor Straten P, Martínez-Ricarte F, Ponsati B, Okada H, Lassen U, Admon A, Ottensmeier CH, Ulges A, Kreiter S, von Deimling A, Skardelly M, Migliorini D, Kroep JR, Idorn M, Rodon J, Piró J, Poulsen HS, Shraibman B, McCann K, Mendrzyk R, Löwer M, Stieglbauer M, Britten CM, Capper D, Welters MJP, Sahuquillo J, Kiesel K, Derhovanessian E, Rusch E, Bunse L, Song C, Heesch S, Wagner C, Kemmer-Brück A, Ludwig J, Castle JC, Schoor O, Tadmor AD, Green E, Fritsche J, Meyer M, Pawlowski N, Dorner S, Hoffgaard F, Rössler B, Maurer D, Weinschenk T, Reinhardt C, Huber C, Rammensee HG, Singh-Jasuja H, Sahin U, Dietrich PY, Wick W (2019) Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565:240–245

    Article  CAS  PubMed  Google Scholar 

  • Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoopes PJ, Wagner RJ, Duval K, Kang K, Gladstone DJ, Moodie KL, Crary-Burney M, Ariaspulido H, Veliz FA, Steinmetz NF, Fiering SN (2018) Treatment of canine oral melanoma with nanotechnology-based immunotherapy and radiation. Mol Pharm 15(9):3717–3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori J, Wang M, Miyashita M, Tanemoto K, Takahashi H, Takemori T, Okumura K, Yagita H, Azuma M (2006) B7-H1-induced apoptosis as a mechanism of immune privilege of corneal allografts. J Immunol 177(9):5928–5935. https://doi.org/10.4049/jimmunol.177.9.5928

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Mo H, Zhang W, Chen X, Qu D, Wang X, Wu D, Wang X, Lan B, Yang B, Wang P, Zhang B, Yang Q, Jiao Y, Xu B (2019) Promising efficacy of SHR-1210, a novel anti–programmed cell death 1 antibody, in patientswith advanced gastric and gastroesophageal junction cancer in China. Cancer 125(5):742–749

    Article  CAS  PubMed  Google Scholar 

  • Huard B, Prigent P, Tournier M, Bruniquel D, Triebel F (1995) CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur J Immunol 25:2718–2721

    Article  CAS  PubMed  Google Scholar 

  • Hugo W, Shi H, Sun L, Piva M, Song C, Kong X, Moriceau G, Hong A, Dahlman KB, Johnson DB, Sosman JA, Ribas A, Lo RS (2015) Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162(6):1271–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizuka JJ, Manguso RT, Cheruiyot CK, Bi K, Panda A, Iracheta-Vellve A, Miller BC, Du PP, Yates KB, Dubrot J, Buchumenski I, Comstock DE, Brown FD, Ayer A, Kohnle IC, Pope HW, Zimmer MD, Sen DR, Lane-Reticker SK, Robitschek EJ, Griffin GK, Collins NB, Long AH, Doench JG, Kozono D, Levanon EY, Haining WN (2019) Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565(7737):43–48

    Article  CAS  PubMed  Google Scholar 

  • Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 99(19):12,293–12,297

    Article  CAS  Google Scholar 

  • Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15(4):234–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, Sharpe AH, Kuchroo VK (2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol 186(3):1338–1342

    Article  CAS  PubMed  Google Scholar 

  • Kahlert C, Kalluri R (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med 91(4):431–437

    Article  CAS  PubMed  Google Scholar 

  • Kandalaft LE, Powell DJ Jr, Chiang CL, Tanyi J, Kim S, Bosch M, Montone K, Mick R, Levine BL, Torigian DA, June CH, Coukos G (2013) Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology 2(1):e22664. https://doi.org/10.4161/onci.22664

    Article  PubMed  PubMed Central  Google Scholar 

  • Kesharwani RK, Keservani RK, Sing P, Katiyar N, Tripathi S (2020) Role of ADMET tools in current scenario: application and limitations. Comput Aided Drug Design:71–87

    Google Scholar 

  • Kim H, Niu L, Larson P, Kucaba TA, Murphy KA, James BR, Ferguson DM, Griffith TS, Panyam J (2018) Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials 164:38–53

    Article  CAS  PubMed  Google Scholar 

  • Kodiha M, Wang YM, Hutter E, Maysinger D, Stochaj U (2015) Off to the organelles—killing cancer cells with targeted gold nanoparticles. Theranostics 5(4):357–370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohlhapp FJ, Kaufman HL (2016) Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 22(5):1048–1054

    Article  CAS  PubMed  Google Scholar 

  • Kokate RA, Chaudhary P, Sun XL, Thamake SI, Maji S, Chib R, Vishwanatha JK, Jones HP (2016) Rationalizing the use of functionalized poly-lactic-coglycolic acid nanoparticles for dendritic cell-based targeted anticancer therapy. Anomedicine (Lond) 11:479–494

    Article  CAS  Google Scholar 

  • Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22(9):1445

    Article  PubMed Central  CAS  Google Scholar 

  • Koshy ST, Cheung AS, Gu L, Graveline AR, Mooney DJ (2017) Liposomal delivery enhances immune activation by STING agonists for cancer immunotherapy. Adv Biosyst 1(1–2):1600013. https://doi.org/10.1002/adbi.201600013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ, Asahina H, Jones RE, Kulkarni MM, Kuraguchi M, Palakurthi S, Fecci PE, Johnson BE, Janne PA, Engelman JA, Gangadharan SP, Costa DB, Freeman GJ, Bueno R, Hodi FS, Dranoff G, Wong KK, Hammerman PS (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10,501. https://doi.org/10.1038/ncomms10501

    Article  CAS  Google Scholar 

  • Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, Meng M, Fritz D, Vascotto F, Hefesha H, Grunwitz C, Vormehr M, Hüsemann Y, Selmi A, Kuhn AN, Buck J, Derhovanessian E, Rae R, Attig S, Diekmann J, Jabulowsky RA, Heesch S, Hassel J, Langguth P, Grabbe S, Huber C, Türeci Ö, Sahin U (2016) Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534(7607):396–401

    Article  PubMed  CAS  Google Scholar 

  • Kreiter S, Selmi A, Diken M, Koslowski M, Britten CM, Huber C, Türeci O, Sahin U (2010) Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 70:9031–9040

    Article  CAS  PubMed  Google Scholar 

  • Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182(2):459–465

    Article  CAS  PubMed  Google Scholar 

  • Kryczek I, Zou L, Rodriguez P, Zhu G, Wei S, Mottram P, Brumlik M, Cheng P, Curiel T, Myers L, Lackner A, Alvarez X, Ochoa A, Chen L, Zou W (2006) B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med 203(4):871–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ (2017) Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater 16(4):489–496

    Article  CAS  PubMed  Google Scholar 

  • Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, Zheng L (2009) Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 206(6):1327–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari N, Dwarakanath BS, Das A, Bhatt AN (2016) Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol 37(9):11,553–11,572

    Article  CAS  Google Scholar 

  • Kwon D, Cha BG, Cho Y, Min J, Park EB, Kang SJ, Kim J (2017) Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Lett 17(5):2747–2756

    Article  CAS  PubMed  Google Scholar 

  • Kyewski B, Klein L (2006) A central role for central tolerance. Annu Rev Immunol 24:571–606

    Article  CAS  PubMed  Google Scholar 

  • Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P, Noelle RJ, Wang L (2014) VISTA regulates the development of protective antitumor immunity. Cancer Res 74(7):1933–1944

    Article  PubMed  CAS  Google Scholar 

  • Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734–1736

    Article  CAS  PubMed  Google Scholar 

  • Lee JJ, Powderly JD, Patel MR, Brody J, Hamilton EP, Infante JR, Falchook GS, Wang H, Gong L, Ma AW, Wyant T, Lazorchak A, Agarwal S, Tuck DP, Daud A (2017) Phase 1 trial of CA-170, a novel oral small molecule dual inhibitor of immune checkpoints PD-1 and VISTA, in patients (pts) with advanced solid tumor or lymphomas. J Clin Oncol 35(15_suppl):TPS3099

    Article  Google Scholar 

  • Lee IH, An S, Yu MK, Kwon HK, Im SH, Jon S (2011) Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates. J Control Release 155:435–441

    Article  CAS  PubMed  Google Scholar 

  • Lewis JS, Zaveri TD, Crooks CP 2nd, Keselowsky BG (2012) Microparticle surface modifications targeting dendritic cells for non-activating applications. Biomaterials 33(29):7221–7232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Li Y, Wang X, Hou Y, Hong X, Gong T, Zhang Z, Sun X (2017a) Rational design of polymeric hybrid micelles to overcome lymphatic and intracellular delivery barriers in cancer immunotherapy. Theranostics 7(18):4383–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Goedegebuure SP, Gillanders WE (2017b) Preclinical and clinical development of neoantigen vaccines. Ann Oncol 28(suppl_12):xii11–xii17. https://doi.org/10.1093/annonc/mdx681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin AY, Almeida JP, Bear A, Liu N, Luo L, Foster AE, Drezek RA (2013) Gold nanoparticle delivery of modified CpG stimulates macrophages and inhibits tumor growth for enhanced immunotherapy. PLoS One 8(5):e63550. https://doi.org/10.1371/journal.pone.0063550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin RL, Zhao LJ (2015) Mechanistic basis and clinical relevance of the role of transforming growth factor-β in cancer. Cancer Biol Med 2(4):385–393

    Google Scholar 

  • Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117(5):1175–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl T, Wood RD (1999) Quality control by DNA repair. Science 286:1897–1905

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Peng W, Xu C, Lou Y, Zhang M, Wargo JA, Chen JQ, Li HS, Watowich SS, Yang Y, Tompers Frederick D, Cooper ZA, Mbofung RM, Whittington M, Flaherty KT, Woodman SE, Davies MA, Radvanyi LG, Overwijk WW, Lizée G, Hwu P (2013) BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res 19(2):393–403

    Article  CAS  PubMed  Google Scholar 

  • Liu L, He H, Liang R, Yi H, Meng X, Chen Z, Pan H, Ma Y, Cai L (2018) ROS-inducing micelles sensitize tumor-associated macrophages to TLR3 stimulation for potent immunotherapy. Biomacromolecules 19(6):2146–2155

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Rojas-Canales DM, Divito SJ, Shufesky WJ, Stolz DB, Erdos G, Sullivan ML, Gibson GA, Watkins SC, Larregina AT, Morelli AE (2016) Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J Clin Invest 126:2805–2820

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Jiang J, Meng H (2019) Transcytosis—an effective targeting strategy that is complementary to “EPR effect” for pancreatic cancer nano drug delivery. Theranostics 9:8018–8025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lizotte PH, Wen AM, Sheen MR, Fields J, Rojanasopondist P, Steinmetz NF, Fiering S (2016) In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat Nanotechnol 11(3):295–303

    Article  CAS  PubMed  Google Scholar 

  • Loeser S, Loser K, Bijker MS, Rangachari M, van der Burg SH, Wada T, Beissert S, Melief CJ, Penninger JM (2007) Spontaneous tumor rejection by CBL-B-deficient CD8+ T Cells. J Exp Med 204:879. https://doi.org/10.1084/jem.20061699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long GV, Dummer R, Ribas A, Puzanov I, Michielin O, VanderWalde A, Andtbacka RHI, Cebon J, Fernandez E, Malvehy J, Olszanski AJ, Gajewski TF, Kirkwood JM, Kuznetsova O, Chen L, Kaufman DR, Chou J, Hodi FS (2015) A Phase I/III, multicenter, open-label trial of talimogene laherparepvec (T-VEC) in combination with pembrolizumab for the treatment of unresected, stage IIIb-IV melanoma (MASTERKEY-265). J Immunother Cancer 3(Suppl 2):P181. https://doi.org/10.1186/2051-1426-3-S2-P181

    Article  PubMed Central  Google Scholar 

  • Long L, Zhang X, Chen F, Pan Q, Phiphatwatchara P, Zeng Y, Chen H (2018) The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer 9(5–6):176–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Liu X, Liao YP, Salazar F, Sun B, Jiang W, Chang CH, Jiang J, Wang X, Wu AM, Meng H, Nel AE (2017) Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat Commun 8(1):1811. https://doi.org/10.1038/s41467-017-01651-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, Lin W (2016) Chlorin-based nanoscale metal-organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J Am Chem Soc 138(38):12,502–12,510

    Article  CAS  Google Scholar 

  • Luo L, Zhu C, Yin H, Jiang M, Zhang J, Qin B, Luo Z, Yuan X, Yang J, Li W, Du Y, You J (2018) Laser immunotherapy in combination with perdurable PD-1 blocking for the treatment of metastatic tumors. ACS Nano 12(8):7647–7662

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, Du M, Huang G, Wang C, Chen X, Porembka MR, Lea J, Frankel AE, Fu YX, Chen ZJ, Gao J (2017) A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol 12(7):648–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda H (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21:797–802

    Article  CAS  PubMed  Google Scholar 

  • Mahjub R, Jatana S, Lee SE, Qin Z, Pauli G, Soleimani M, Madadi S, Li SD (2018) Recent advances in applying nanotechnologies for cancer immunotherapy. J Control Release 288:239–263

    Article  CAS  PubMed  Google Scholar 

  • Mailliard RB, Egawa S, Cai Q, Kalinska A, Bykovskaya SN, Lotze MT, Kapsenberg ML, Storkus WJ, Kalinski P (2002) Complementary dendritic cell-activating function of CD8+ and CD4+ T cells: helper role of CD8+ T cells in the development of T helper type 1 responses. J Exp Med 195(4):473–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majzner RG, Heitzeneder S, Mackall CL (2017) Harnessing the immunotherapy revolution for the treatment of childhood cancers. Cancer Cell 31(4):476–485

    Article  CAS  PubMed  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. W. H. Freeman, New York

    Book  Google Scholar 

  • Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Curr Opin Immunol 22(2):231–237

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A (2018) The inflammation—cancer connection. FEBS J 285(4):638–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel EE III, Koeppen H, Astarita JL, Cubas R, Jhunjhunwala S, Banchereau R, Yang Y, Guan Y, Chalouni C, Ziai J, Şenbabaoğlu Y, Santoro S, Sheinson D, Hung J, Giltnane JM, Pierce AA, Mesh K, Lianoglou S, Riegler J, Carano RAD, Eriksson P, Höglund M, Somarriba L, Halligan DL, van der Heijden MS, Loriot Y, Rosenberg JE, Fong L, Mellman I, Chen DS, Green M, Derleth C, Fine GD, Hegde PS, Bourgon R, Powles T (2018) TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554(7693):544–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathios D, Kim JE, Mangraviti A, . Phallen J, Park CK, Jackson CM, Garzon-Muvdi T, Kim E, Theodros D, Polanczyk M, Martin AM, Suk I, Ye X, Tyler B, Bettegowda C, Brem H, Pardoll DM, Lim M. (2016) Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Sci Transl Med 8(370):370ra180. doi:https://doi.org/10.1126/scitranslmed.aag2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K, Yamamoto T, Kamata R, Maeda H (1984) Pathogenesis of serratial infection: activation of the Hageman factor-prekallikrein cascade by serratial protease. J Biochem (Tokyo) 96:739–749

    Article  CAS  Google Scholar 

  • Mazzone M, Bergers G (2019) Regulation of blood and lymphatic vessels by immune cells in tumors and metastasis. Annu Rev Physiol 81:535–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLane LM, Abdel-Hakeem MS, Wherry EJ (2019) CD8 T cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol 37:457–495

    Article  CAS  PubMed  Google Scholar 

  • Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489. https://doi.org/10.1038/nature10673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merches I, Agop M (2016) Differentiability and fractality in dynamics of physical systems. World Scientific, Singapore

    Google Scholar 

  • Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, Leyvraz L, Michielin O, Romano E, Speiser DE (2014) Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother 63(3):247–257

    Article  CAS  PubMed  Google Scholar 

  • Middha S, Yaeger R, Shia J, Stadler ZK, King S, Guercio S, Paroder V, Bates DDB, Rana S, Diaz LA Jr, Saltz L, Segal N, Ladanyi M, Zehir A, Hechtman JF (2019) Majority of B2M-mutant and -deficient colorectal carcinomas achieve clinical benefit from immune checkpoint inhibitor therapy and are microsatellite instability-high. JCO Precis Oncol 3. https://doi.org/10.1200/PO.18.00321

  • Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, Chai S, Herring LE, Zhang L, Zhang T, DeSimone JM, Tepper JE, Vincent BG, Serody JS, Wang AZ (2017) Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol 12(9):877–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaei HR, Rodriguez A, Shepphird J, Brown CE, Badie B (2017) Chimeric antigen receptors T cell therapy in solid tumor: challenges and clinical applications. Front Immunol 8:1850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell M (2009) Complexity: a guided tour. Oxford University Press, Oxford

    Google Scholar 

  • Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T, Bruneval P, Trajanoski Z, Fridman WH, Pagès F, Galon J (2011) Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol 29(6):610–618

    Article  PubMed  Google Scholar 

  • Mlecnik B, Van den Eynde M, Bindea G, Church SE, Vasaturo A, Fredriksen T, Lafontaine L, Haicheur N, Marliot F, Debetancourt D, Pairet G, Jouret-Mourin A, Gigot JF, Hubert C, Danse E, Dragean C, Carrasco J, Humblet Y, Valge-Archer V, Berger A, Pagès F, Machiels JP, Galon J (2018) Comprehensive intrametastatic immune quantification and major impact of immunoscore on survival [published correction appears in J Natl Cancer Inst. 2018 Apr 1;110(4):438]. J Natl Cancer Inst 110(1). https://doi.org/10.1093/jnci/djx123

  • Molino NM, Neek M, Tucker JA, Nelson EL, Wang SW (2017) Display of DNA on nanoparticles for targeting antigen presenting cells. ACS Biomater Sci Eng 3(4):496–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon JJ, Huang B, Irvine DJ (2012) Engineering nano- and microparticles to tune immunity. Adv Mater 24(28):3724–3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, Hsu DH, Le Pecq JB, Lyerly HK (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3(1):9. https://doi.org/10.1186/1479-5876-3-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder WJM, Gnjatic S (2017) Cancer immunotherapy: from local to global. Nat Nanotechnol 12(9):840–841

    Article  CAS  PubMed  Google Scholar 

  • Mumm JB, Emmerich J, Zhang X, Chan I, Wu L, Mauze S, Blaisdell S, Basham B, Dai J, Grein J, Sheppard C, Hong K, Cutler C, Turner S, LaFace D, Kleinschek M, Judo M, Ayanoglu G, Langowski J, Gu D, Paporello B, Murphy E, Sriram V, Naravula S, Desai B, Medicherla S, Seghezzi W, McClanahan T, Cannon-Carlson S, Beebe AM, Oft M (2011) IL-10 elicits IFNγ-dependent tumor immune surveillance. Cancer Cell 20(6):781–796

    Article  CAS  PubMed  Google Scholar 

  • Naing A, Papadopoulos KP, Autio KA, Ott PA, Patel MR, Wong DJ, Falchook GS, Pant S, Whiteside M, Rasco DR, Mumm JB, Chan IH, Bendell JC, Bauer TM, Colen RR, Hong DS, Van Vlasselaer P, Tannir NM, Oft M, Infante JR (2016) Safety, antitumor activity, and immune activation of pegylated recombinant human interleukin-10 (AM0010) in patients with advanced solid tumors. J Clin Oncol 34(29):3562–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naing A, Wong DJ, Infante JR, Korn WM, Aljumaily R, Papadopoulos KP, Autio KA, Pant S, Bauer TM, Drakaki A, Daver NG, Hung A, Ratti N, McCauley S, Van Vlasselaer P, Verma R, Ferry D, Oft M, Diab A, Garon EB, Tannir NM (2019) Pegilodecakin combined with pembrolizumab or nivolumab for patients with advanced solid tumours (IVY): a multicentre, multicohort, open-label, phase 1b trial. Lancet Oncol 20(11):1544–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanjwade BK, Bechra BK, Derkar HM, Manvi FV, Nanjwade VK (2009) Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 38:185–196

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TL, Choi Y, Kim J (2019) Mesoporous silica as a versatile platform for cancer immunotherapy. Adv Mater 31(34):e1803953. https://doi.org/10.1002/adma.201803953

    Article  CAS  PubMed  Google Scholar 

  • Nielsen SR, Schmid MC (2017) Macrophages as key drivers of cancer progression and metastasis. Mediators Inflamm 2017:9624760. https://doi.org/10.1155/2017/9624760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M, Sato T, Habu S, Tashiro H, Sato M, Ohta A (1999) Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 190(5):617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nottale L (2011) Scale relativity and fractal space-time—a new approach to unifying relativity and quantum mechanics. Imperial College Press, London

    Book  Google Scholar 

  • Nuhn L, Vanparijs N, De Beuckelaer A, Lybaert L, Verstraete G, Deswarte K, Lienenklaus S, Shukla NM, Salyer AC, Lambrecht BN, Grooten J, David SA, De Koker S, De Geest BG (2016) pH-degradable imidazoquinoline-ligated nanogels for lymph node-focused immune activation. Proc Natl Acad Sci U S A 113(29):8098–8103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, Chen C, Olive O, Carter TA, Li S, Lieb DJ, Eisenhaure T, G**i E, Stevens J, Lane WJ, Javeri I, Nellaiappan K, Salazar AM, Daley H, Seaman M, Buchbinder EI, Yoon CH, Harden M, Lennon N, Gabriel S, Rodig SJ, Barouch DH, Aster JC, Getz G, Wucherpfennig K, Neuberg D, Ritz J, Lander ES, Fritsch EF, Hacohen N, Wu CJ (2017) An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547:217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC (2019) Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics 9(26):8073–8090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YJ, Kuen DS, Chung Y (2018) Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Exp Mol Med 50(8):109. https://doi.org/10.1038/s12276-018-0130-1

    Article  CAS  PubMed Central  Google Scholar 

  • Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, Drake AM, Chen Z, Sen DR, Kurachi M, Barnitz RA, Bartman C, Bengsch B, Huang AC, Schenkel JM, Vahedi G, Haining WN, Berger SL, Wherry EJ (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354(6316):1160–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  PubMed  Google Scholar 

  • Peng J, **ao Y, Li W, Yang Q, Tan L, Jia Y, Qu Y, Qian Z (2018) Photosensitizer micelles together with ido inhibitor enhance cancer photothermal therapy and immunotherapy. Adv Sci (Weinh) 5(5):1700891. https://doi.org/10.1002/advs.201700891

    Article  CAS  Google Scholar 

  • Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, Williams LJ, Deng W, Chen G, Mbofung R, Lazar AJ, Torres-Cabala CA, Cooper ZA, Chen PL, Tieu TN, Spranger S, Yu X, Bernatchez C, Forget MA, Haymaker C, Amaria R, McQuade JL, Glitza IC, Cascone T, Li HS, Kwong LN, Heffernan TP, Hu J, Bassett RL Jr, Bosenberg MW, Woodman SE, Overwijk WW, Lizée G, Roszik J, Gajewski TF, Wargo JA, Gershenwald JE, Radvanyi L, Davies MA, Hwu P (2016) Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 6(2):202–216

    Article  CAS  PubMed  Google Scholar 

  • Perise-Barrios AJ, Gomez R, Corbi AL, de la Mata J, Dominiguez-Soto A, Munoz-Fernandez MA (2015) Use of carbosilane dendrimer to switch macrophage polarization for the acquisition of antitumor functions. Nanoscale 7:3857–3866

    Article  CAS  PubMed  Google Scholar 

  • Polesso F, Sarker M, Weinberg AD, Murray SE, Moran AE (2019) OX40 agonist tumor immunotherapy does not impact regulatory T cell suppressive function. J Immunol 203(7):2011–2019

    Article  CAS  PubMed  Google Scholar 

  • Poschke I, Mougiakakos D, Kiessling R (2011) Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol Immunother 60:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Prendergast GC, Malachowski WP, DuHadaway JB, Muller AJ (2017) Discovery of IDO1 inhibitors: from bench to bedside. Cancer Res 77(24):6795–6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preston RJ (2005) Mechanistic data and cancer risk assessment: the need for quantitative molecular endpoints. Environ Mol Mutagen 45:214–221

    Article  CAS  PubMed  Google Scholar 

  • Qiu H, Min Y, Rodgers Z, Zhang L, Wang AZ (2017) Nanomedicine approaches to improve cancer immunotherapy. Wiley Interdisciplinary Rev: Nanomed Nanobiotechnol 9(5):1–15

    Google Scholar 

  • Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z, Hou TZ, Futter CE, Anderson G, Walker LS, Sansom DM (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332(6029):600–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Riley JL (2009) PD-1 signaling in primary T cells. Immunol Rev 229(1):114–125. https://doi.org/10.1111/j.1600-065X.2009.00767.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rios-Doria J, Durham N, Wetzel L, Rothstein R, Chesebrough J, Holoweckyj N, Zhao W, Leow CC, Hollingsworth R (2015) Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models. Neoplasia 17(8):661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917–924

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, Kohler RH, Pittet MJ, Weissleder R (2018) TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng 2:578–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Ruiz ME, Rodríguez I, Mayorga L, Labiano T, Barbes B, Etxeberria I, Ponz-Sarvise M, Azpilikueta A, Bolaños E, Sanmamed MF, Berraondo P, Calvo FA, Barcelos-Hoff MH, Perez-Gracia JL, Melero I (2019) TGFβ blockade enhances radiotherapy abscopal efficacy effects in combination with anti-PD1 and anti-CD137 immunostimulatory monoclonal antibodies. Mol Cancer Ther 18(3):621–631

    Article  PubMed  Google Scholar 

  • Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT, Silva AL, Jiskoot W, de Gruijl T, Löwik C, Oostendorp J, van der Burg SH, Ossendorp F (2015) CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 40:88–97

    Article  CAS  PubMed  Google Scholar 

  • Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 107:12,204–12,209

    Article  CAS  Google Scholar 

  • Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragón L, Jacquelot N, Qu B, Ferrere G, Clémenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97

    Article  CAS  PubMed  Google Scholar 

  • Rytelewski M, Haryutyunan K, Nwajei F, Shanmugasundaram M, Wspanialy P, Zal MA, Chen CH, El Khatib M, Plunkett S, Vinogradov SA, Konopleva M, Zal T (2019) Merger of dynamic two-photon and phosphorescence lifetime microscopy reveals dependence of lymphocyte motility on oxygen in solid and hematological tumors. J Immunother Cancer 7(1):78. https://doi.org/10.1186/s40425-019-0543-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, Bukur V, Tadmor AD, Luxemburger U, Schrörs B, Omokoko T, Vormehr M, Albrecht C, Paruzynski A, Kuhn AN, Buck J, Heesch S, Schreeb KH, Müller F, Ortseifer I, Vogler I, Godehardt E, Attig S, Rae R, Breitkreuz A, Tolliver C, Suchan M, Martic G, Hohberger A, Sorn P, Diekmann J, Ciesla J, Waksmann O, Brück AK, Witt M, Zillgen M, Rothermel A, Kasemann B, Langer D, Bolte S, Diken M, Kreiter S, Nemecek R, Gebhardt C, Grabbe S, Höller C, Utikal J, Huber C, Loquai C, Türeci Ö (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–226

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787

    Article  CAS  PubMed  Google Scholar 

  • Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Hatakeyama H, Sakurai Y, Hyodo M, Akita H, Harashima H (2012) A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J Control Release 163(3):267–276

    Article  CAS  PubMed  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Segal NH, Logan TF, Hodi FS, McDermott D, Melero I, Hamid O, Schmidt H, Robert C, Chiarion-Sileni V, Ascierto PA, Maio M, Urba WJ, Gangadhar TC, Suryawanshi S, Neely J, Jure-Kunkel M, Krishnan S, Kohrt H, Sznol M, Levy R (2017) Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res 23(8):1929–1936

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Wagner K, Wolchok JD, Allison JP (2011) Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer 11(11):805–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpe AH, Pauken KE (2018) The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 18(3):153–167

    Article  CAS  PubMed  Google Scholar 

  • Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, Grasso CS, Hugo W, Sandoval S, Torrejon DY, Palaskas N, Rodriguez GA, Parisi G, Azhdam A, Chmielowski B, Cherry G, Seja E, Berent-Maoz B, Shintaku IP, Le DT, Pardoll DM, Diaz LA Jr, Tumeh PC, Graeber TG, Lo RS, Comin-Anduix BC, Ribas A (2017) Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov 7(2):188–201

    Article  CAS  PubMed  Google Scholar 

  • Sigston EAW, Williams BRG (2017) An emergence framework of carcinogenesis. Front Oncol 14. https://doi.org/10.3389/fonc.2017.00198

  • Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, Peggs KS, Ravetch JV, Allison JP, Quezada SA (2013) Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 210(9):1695–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VS (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288

    Article  CAS  PubMed  Google Scholar 

  • Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13(8):592–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor associated macrophages (TAM) as major players of the cancerrelated inflammation. J Leukoc Biol 86(5):1065–1073

    Article  CAS  PubMed  Google Scholar 

  • Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A, Francescato S, Basso G, Zanovello P, Onicescu G, Garrett-Mayer E, Montero AJ, Bronte V, Mandruzzato S (2011) A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118(8):2254–2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235

    Article  CAS  PubMed  Google Scholar 

  • Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF (2014) Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer 2:3. https://doi.org/10.1186/2051-1426-2-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70(1):68–77

    Article  CAS  PubMed  Google Scholar 

  • Stamm H, Wellbrock J, Fiedler W (2018) Interaction of PVR/PVRL2 with TIGIT/DNAM-1 as a novel immune checkpoint axis and therapeutic target in cancer. Mamm Genome 29(11-12):694–702

    Article  CAS  PubMed  Google Scholar 

  • Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ (2010) Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat Med 16(9):1035–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoler DL, Chen N, Basik M, Kahlenberg MS, Rodriguez-Bigas MA, Petrelli NJ, Anderson GR (1999) The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc Natl Acad Sci U S A 96:15,121–15,126

    Article  CAS  Google Scholar 

  • Stone JD, Harris DT, Kranz DM (2015) TCR affinity for p/MHC formed by tumor antigens that are self-proteins: impact on efficacy and toxicity. Curr Opin Immunol 33:16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumar S, Wilson DC, Yu Y, Wong J, Naravula S, Ermakov S, Riener R, Bhagwat B, Necheva AS, Grein J, Churakova T, Mangadu T, Georgiev P, Manfra D, Pinheiro EM, Sriram V, Bailey WJ, Herzyk D, McClanahan TK, Willingham A, Beebe AM, Sadekova S (2017) Characterization of MK-4166, a clinical agonistic antibody that targets human GITR and inhibits the generation and suppressive effects of T regulatory cells. Cancer Res 77(16):4378–4388

    Article  CAS  PubMed  Google Scholar 

  • Swartz MA, Hirosue S, Hubbell JA (2012) Engineering approaches to immunotherapy. Sci Transl Med 4(148):148rv9. https://doi.org/10.1126/scitranslmed.3003763

    Article  CAS  PubMed  Google Scholar 

  • Syn NL, Teng MWL, Mok TSK, Soo RA (2017) De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol 18(12):e731–e741. https://doi.org/10.1016/S14702045(17)30607-1

    Article  PubMed  Google Scholar 

  • Tang XJ, Sun XY, Huang KM, Zhang L, Yang ZS, Zou DD, Wang B, Warnock GL, Dai LJ, Luo J (2015) Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy. Oncotarget 6(42):44,179–44,190. https://doi.org/10.18632/oncotarget.6175

    Article  Google Scholar 

  • Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Cañellas A, Hernando-Momblona X, Byrom D, Matarin JA, Calon A, Rivas EI, Nebreda AR, Riera A, Attolini CS, Batlle E (2018) TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554(7693):538–543

    Article  CAS  PubMed  Google Scholar 

  • Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat Rev Clin Oncol 16(6):356–371

    Article  CAS  PubMed  Google Scholar 

  • Tolcher AW, Sznol M, Hu-Lieskovan S, Papadopoulos KP, Patnaik A, Rasco DW, Di Gravio D, Huang B, Gambhire D, Chen Y, Thall AD, Pathan N, Schmidt EV, Chow LQM (2017) Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res 23(18):5349–5357

    Article  CAS  PubMed  Google Scholar 

  • Tomkovich S, Jobin C (2016) Microbiota and host immune responses: a love-hate relationship. Immunology 147:1–10

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27(4):450–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  CAS  PubMed  Google Scholar 

  • Townsend MH, Shrestha G, Robison RA, O'Neill KL (2018) The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 37:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trager MH, Geskin LJ, Saenger YM (2020) Oncolytic viruses for the treatment of metastatic melanoma. Curr Treat Options Oncol 21(4):26. https://doi.org/10.1007/s11864-020-0718-2

    Article  PubMed  Google Scholar 

  • Vallhov H, Gabrielsson S, Strømme M, Scheynius A, Garcia-Bennett AE (2007) Mesoporous silica particles induce size dependent effects on human dendritic cells. Nano Lett 7(12):3576–3582

    Article  CAS  PubMed  Google Scholar 

  • van Beek AA, Zhou G, Doukas M, Boor PPC, Noordam L, Mancham S, Campos Carrascosa L, van der Heide-Mulder M, Polak WG, Ijzermans JNM, Pan Q, Heirman C, Mahne A, Bucktrout SL, Bruno MJ, Sprengers D, Kwekkeboom J (2019) GITR ligation enhances functionality of tumor-infiltrating T cells in hepatocellular carcinoma. Int J Cancer 145(4):1111–1124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Schandevyl S, Kerre T (2020) Chimeric antigen receptor T-cell therapy: design improvements and therapeutic strategies in cancer treatment. Acta Clinica Belgica 75(1):26–32. https://doi.org/10.1080/17843286.2018.1545373

    Article  PubMed  Google Scholar 

  • Veglia F, Gabrilovich DI (2017) Dendritic cells in cancer: the role revisited. Curr Opin Immunol 45:43–51. https://doi.org/10.1016/j.coi.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  PubMed  Google Scholar 

  • Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Bérard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350(6264):1079–1084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidard L, Dureuil C, Baudhuin J, Vescovi L, Durand L, Sierra V, Parmantier E (2019) CD137 (4-1BB) engagement fine-tunes synergistic IL-15- and IL-21-driven NK cell proliferation. J Immunol 203(3):676–685

    Article  CAS  PubMed  Google Scholar 

  • Viehl CT, Moore TT, Liyanage UK, Frey DM, Ehlers JP, Eberlein TJ, Goedegebuure PS, Linehan DC (2006) Depletion of CD4+CD25+ regulatory T cells promotes a tumor-specific immune response in pancreas cancer-bearing mice. Ann Surg Oncol 13(9):1252–1258

    Article  PubMed  Google Scholar 

  • Vo DD, Prins RM, Begley JL, Donahue TR, Morris LF, Bruhn KW, de la Rocha P, Yang MY, Mok S, Garban HJ, Craft N, Economou JS, Marincola FM, Wang E, Ribas A (2009) Enhanced antitumor activity induced by adoptive T-cell transfer and adjunctive use of the histone deacetylase inhibitor LAQ824. Cancer Res 69(22):8693–8699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volovat SR, Ciuleanu TE, Koralewski P, Olson JEG, Croitoru A, Koynov K, Stabile S, Cerea G, Osada A, Bobe I, Volovat C (2020) A multicenter, single-arm, basket design, phase II study of NC- 6004 plus gemcitabine in patients with advanced unresectable lung, biliary tract, or bladder cancer. Oncotarget 11(33):3105–3117

    Article  PubMed  PubMed Central  Google Scholar 

  • Waeckerle-Men Y, Groettrup M (2005) PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev 57:475–482

    Article  CAS  PubMed  Google Scholar 

  • Waldmann TA (2018) Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol 10(12):a028472. https://doi.org/10.1101/cshperspect.a028472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Xu L, Liang C, **ang J, Peng R, Liu Z (2014a) Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv Mater 26(48):8154–8162

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Jia B, Claxton DF, Ehmann WC, Rybka WB, Mineishi S, Naik S, Khawaja MR, Sivik J, Han J, Hohl RJ, Zheng H (2018) VISTA is highly expressed on MDSCs and mediates an inhibition of T cell response in patients with AML. Oncoimmunology 7(9):e1469594. https://doi.org/10.1080/2162402X.2018.1469594

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Zhang D, Wu K, Zhao Q, Nie Y, Fan D (2014b) Long noncoding RNA MRUL promotes ABCB1 expression in multicell-resistant gastric cancer cell sublines. Mol Cell Biol 34:3182–3193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkie KP, Hahnfeldt P (2013) Mathematical models of immune-induced cancer dormancy and the emergence of immune evasion. Interface Focus 3:20130010. https://doi.org/10.1098/rsfs.2013.0010

    Article  PubMed  PubMed Central  Google Scholar 

  • Willimsky G, Blankenstein T (2005) Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437(7055):141–146

    Article  CAS  PubMed  Google Scholar 

  • Willoughby J, Griffiths J, Tews I, Cragg MS (2017) OX40: structure and function—What questions remain? Mol Immunol 83:13–22

    Article  CAS  PubMed  Google Scholar 

  • Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13(3):269–288

    Article  CAS  PubMed  Google Scholar 

  • Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, Erhan SZ, Wu XY (2006) A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 23:1574–1585

    Article  CAS  PubMed  Google Scholar 

  • Workman CJ, Dugger KJ, Vignali DA (2002) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol 169:5392–5395

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Peng M, Huang B, Zhang H, Wang H, Huang B, Xue Z, Zhang L, Da Y, Yang D, Yao Z, Zhang R (2013) Immune microenvironment profiles of tumor immune equilibrium and immune escape states of mouse sarcoma. Cancer Lett 340(1):124–133

    Article  CAS  PubMed  Google Scholar 

  • Xu J (ed) (2020) Regulation of cancer imune checkpoints. Molecular and cellular mechanisms and therapy. Springer, Singapore

    Google Scholar 

  • Xu W, Hiếu T, Malarkannan S, Wang L (2018) The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell Mol Immunol 15(5):438–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Wang Y, Zhang L, Huang L (2014) Nanoparticle-delivered transforming growth factor-β siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano 8(4):3636–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan K (2020) Discovery of new immune checkpoints: family grows up in regulation of cancer immune checkpoints. Molecular and cellular mechanisms and therapy. Springer, Singapore, pp 101–103

    Google Scholar 

  • Xue J, Yu X, Xue L, Ge X, Zhao W, Peng W (2019) Intrinsic β-catenin signaling suppresses CD8+ T-cell infiltration in colorectal cancer. Biomed Pharmacother 115:108921. https://doi.org/10.1016/j.biopha.2019.108921

    Article  CAS  PubMed  Google Scholar 

  • Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung T, Fritsche J, Weinschenk T, Modrusan Z, Mellman I, Lill JR, Delamarre L (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515:572–576

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Fu H, Wang B, Zhang X, Mao J, Li X, Wang M, Sun Z, Qian H, Xu W (2018) Exosomal miR-423-5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. Mol Carcinog 57(9):1223–1236. https://doi.org/10.1002/mc.22838

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Shangguan J, Eresen A, Li Y, Wang J, Zhang Z (2019) Dendritic cells in pancreatic cancer immunotherapy: vaccines and combination immunotherapies. Pathol Res Pract:152691. https://doi.org/10.1016/j.prp.2019.152691

  • Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13(1):23–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, Dang Y, Chu Y, Fan J, He R (2016) FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res 76(14):4124–4135. https://doi.org/10.1158/0008-5472.CAN-15-2973

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Xu L, Chao Y, Xu J, Su X, Wu Y, Peng R, Liu Z (2017) Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun 8:902. https://doi.org/10.1038/s41467-017-01050-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida M, Taguchi A, Kawana K, Adachi K, Kawata A, Ogishima J, Nakamura H, Fujimoto A, Sato M, Inoue T, Nishida H, Furuya H, Tomio K, Arimoto T, Koga K, Wada-Hiraike O, Oda K, Nagamatsu T, Kiyono T, Osuga Y, Fujii T (2016) Modification of the tumor microenvironment in KRAS or c-MYC-induced ovarian cancer-associated peritonitis. PLoS One 11(8):e0160330. https://doi.org/10.1371/journal.pone.0160330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuba E, Kanda Y, Yoshizaki Y, Teranishi R, Harada A, Sugiura K, Izawa T, Yamate J, Sakaguchi N, Koiwai K, Kono K (2015) pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy. Biomaterials 67:214–224. https://doi.org/10.1016/j.biomaterials.2015.07.031

    Article  CAS  PubMed  Google Scholar 

  • Yuba E, Yamaguchi A, Yoshizaki Y, Harada A, Kono K (2017) Bioactive polysaccharide-based pH-sensitive polymers for cytoplasmic delivery of antigen and activation of antigen-specific immunity. Biomaterials 120:32–45

    Article  CAS  PubMed  Google Scholar 

  • Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, Pajarinen JS, Nejadnik H, Goodman S, Moseley M, Coussens LM, Daldrup-Link HE (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11(11):986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan Y, Gerondakis S, Coghill E, Bourges D, Xu Y, Brady JL, Lew AM (2008) Glucocorticoid-induced TNF receptor expression by T cells is reciprocally regulated by NF-kappaB and NFAT. J Immunol 181(8):5405–5413

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Wei W, Wang P, Zuo L, Li F, Xu J, ** X, Gao X, Ma G, **e HY (2017) Biomimetic magnetosomes as versatile artificial antigen-presenting cells to potentiate T-cell-based anticancer therapy. ACS Nano 11(11):10,724–10,732

    Article  CAS  Google Scholar 

  • Zhao M, Yang M, Li X-M, Jiang P, Baranov E, Li S, Xu M, Penman S, Hoffman RM (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A 102:755–760. https://doi.org/10.1073/pnas.0408422102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Yang K, Zhao R, Ji T, Wang X, Yang X, Zhang Y, Cheng K, Liu S, Hao J, Ren H, Leong KW, Nie G (2016) Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials 102:187–197

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhao X, Cheng Y, Guo X, Yuan W (2018) Iron oxide nanoparticles-based vaccine delivery for cancer treatment. Mol Pharm 15(5):1791–1799

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Tang L, Mabardi L, Kumari S, Irvine DJ (2017) Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors. ACS Nano 11(3):3089–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Vladau C, Shunner A, Min WP (2010) siRNA specific delivery system for targeting dendritic cells. Methods Mol Biol 623:173–188

    Article  CAS  PubMed  Google Scholar 

  • Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8:328rv4.a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maricel Agop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Volovat, C., Volovat, SR., Agop, M. (2022). Nanotechnology and Immunomodulators in Cancer. In: Kesharwani, R.K., Keservani, R.K., Sharma, A.K. (eds) Immunomodulators and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-16-6379-6_5

Download citation

Publish with us

Policies and ethics

Navigation