Log in

Evaluating Ratio Indices Based on Electroencephalogram Brainwaves in Schizophrenia Detection

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Extensive research has been conducted by neurocognitive and psychological scientists to diagnose mental and neurological diseases intelligently. Recently, researchers have shown interest in Electroencephalogram (EEG) analysis, a non-invasive method of recording the brain’s electrical activity from the scalp surface. EEG signals contain different frequency bands, each indicating specific brain activities. Although the relative powers of single EEG waves are not all-inclusive indicators to consistently imitate mental involvement, ratio indices should be considered. These indices calculate the ratio of powers (summations) with more than a single frequency band.

Methods

This study quantifies the EEG signals of healthy control and schizophrenic groups using thirty-seven ratio indices based on EEG brainwaves. These indicators are examined for the first time in schizophrenia. The study evaluates which index is more suitable and efficient for solving a classification problem.

Results

The results show the potential of (delta + theta)/alpha in the schizophrenia classification with an average accuracy of 97.92%. Additionally, the study investigates the effectiveness of different EEG electrodes in the problem of schizophrenia diagnosis while utilizing the above indicators. T5, the left posterior temporal region, yields a maximum average accuracy of 92.92%.

Conclusion

In conclusion, the fusion of EEG frequency ratio indices and machine learning algorithms provides a potential avenue for improving the detection and diagnosis of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The RepOD dataset [19, 20] analyzed in this experiment is freely available at public domain.

References

  1. Yung, A. R., & McGorry, P. D. (1996). The prodromal phase of first-episode psychosis: Past and current conceptualizations. Schizophrenia Bulletin, 22(2), 353–370. https://doi.org/10.1093/schbul/22.2.353

    Article  CAS  PubMed  Google Scholar 

  2. Kuharic, D. B., Kekin, I., Hew, J., Kuzman, M. R., & Puljak, L. (2020). Preventive treatments in patients at high risk of psychosis. The Lancet. Psychiatry, 7(5), 384–385. https://doi.org/10.1016/S2215-0366(20)30100-0

    Article  PubMed  Google Scholar 

  3. Perrottelli, A., Giordano, G. M., Brando, F., Giuliani, L., & Mucci, A. (2021). EEG-based measures in at-risk mental state and early stages of Schizophrenia: A systematic review. Frontiers in Psychiatry, 12, 653642. https://doi.org/10.3389/fpsyt.2021.653642

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gruzelier, J., Inoue, A., Smart, R., Steed, A., & Steffert, T. (2010). Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neuroscience Letters, 480(2), 112–116. https://doi.org/10.1016/j.neulet.2010.06.019

    Article  CAS  PubMed  Google Scholar 

  5. Abhang, P. A., Gawali, B. W., & Mehrotra, S. C. (2016). Introduction to EEG- and speech-based emotion recognition (pp. 19–50). Elsevier.

    Book  Google Scholar 

  6. Newson, J. J., & Thiagarajan, T. C. (2019). EEG frequency bands in psychiatric disorders: A review of resting state studies. Frontiers in Human Neuroscience, 12, 521. https://doi.org/10.3389/fnhum.2018.00521

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yeh, T. C., Huang, C. C., Chung, Y. A., Park, S. Y., Im, J. J., Lin, Y. Y., Ma, C. C., Tzeng, N. S., & Chang, H. A. (2023). Resting-state EEG connectivity at high-frequency bands and attentional performance dysfunction in stabilized schizophrenia patients. Medicina (Kaunas, Lithuania), 59(4), 737. https://doi.org/10.3390/medicina59040737

    Article  PubMed  PubMed Central  Google Scholar 

  8. Freche, D., Naim-Feil, J., Hess, S., Peled, A., Grinshpoon, A., Moses, E., & Levit-Binnun, N. (2020). Phase-amplitude markers of synchrony and noise: A resting-state and TMS-EEG study of schizophrenia. Cerebral Cortex Communications, 1(1), tgaa013. https://doi.org/10.1093/texcom/tgaa013

    Article  PubMed  PubMed Central  Google Scholar 

  9. Roach, B. J., & Mathalon, D. H. (2008). Event-related EEG time-frequency analysis: An overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophrenia bulletin, 34(5), 907–926. https://doi.org/10.1093/schbul/sbn093

    Article  PubMed  PubMed Central  Google Scholar 

  10. Donoghue, T., Dominguez, J., & Voytek, B. (2020). Electrophysiological frequency band ratio measures conflate periodic and aperiodic neural activity. eNeuro, 7(6), ENEURO.0192-20. https://doi.org/10.1523/ENEURO.0192-20.2020

    Article  Google Scholar 

  11. Schultheis, C., Rosenbrock, H., Mack, S. R., Vinisko, R., Schuelert, N., Plano, A., & Süssmuth, S. D. (2022). Quantitative electroencephalography parameters as neurophysiological biomarkers of schizophrenia-related deficits: A Phase II substudy of patients treated with iclepertin (BI 425809). Translational psychiatry, 12(1), 329. https://doi.org/10.1038/s41398-022-02096-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Apicella, A., Arpaia, P., Frosolone, M., Improta, G., Moccaldi, N., & Pollastro, A. (2022). EEG-based measurement system for monitoring student engagement in learning 4.0. Scientific Reports, 12(1), 5857. https://doi.org/10.1038/s41598-022-09578-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marcantoni, I., Assogna, R., Del Borrello, G., Di Stefano, M., Morano, M., Romagnoli, S., Leoni, C., Bruschi, G., Sbrollini, A., Morettini, M., & Burattini, L. (2023). Ratio Indexes based on spectral electroencephalographic brainwaves for assessment of mental involvement: A systematic review. Sensors (Basel, Switzerland), 23(13), 5968. https://doi.org/10.3390/s23135968

    Article  ADS  PubMed  Google Scholar 

  14. Correll, C. U., Kishimoto, T., Nielsen, J., & Kane, J. M. (2011). Quantifying clinical relevance in the treatment of schizophrenia. Clinical Therapeutics, 33(12), B16–B39. https://doi.org/10.1016/j.clinthera.2011.11.016

    Article  PubMed  PubMed Central  Google Scholar 

  15. Searle, A., Allen, L., Lowther, M., Cotter, J., & Barnett, J. H. (2022). Measuring functional outcomes in schizophrenia in an increasingly digital world. Schizophrenia Research. Cognition, 29, 100248. https://doi.org/10.1016/j.scog.2022.100248

    Article  PubMed  PubMed Central  Google Scholar 

  16. Long, M., Stansfeld, J. L., Davies, N., Crellin, N. E., & Moncrieff, J. (2022). A systematic review of social functioning outcome measures in schizophrenia with a focus on suitability for intervention research. Schizophrenia Research, 241, 275–291. https://doi.org/10.1016/j.schres.2022.02.011

    Article  PubMed  Google Scholar 

  17. Barrios, M., Guilera, G., Hidalgo, M. D., Cheung, E. C. F., Chan, R. C. K., & Gómez-Benito, J. (2020). The most commonly used instruments in research on functioning in schizophrenia: What are they measuring? European Psychologist, 25(4), 283–292. https://doi.org/10.1027/1016-9040/a000386

    Article  Google Scholar 

  18. Wang, D., Li, H., & Chen, J. (2019). Detecting and measuring construction workers’ vigilance through hybrid kinematic-EEG signals. Automation in Construction, 100, 11–23. https://doi.org/10.1016/j.autcon.2018.12.018

    Article  Google Scholar 

  19. Olejarczyk, E., & Jernajczyk, W. (2017). EEG in schizophrenia. RepOD. https://doi.org/10.18150/repod.0107441

    Article  Google Scholar 

  20. Olejarczyk, E., & Jernajczyk, W. (2017). Graph-based analysis of brain connectivity in schizophrenia. PLoS ONE, 12(11), e0188629. https://doi.org/10.1371/journal.pone.0188629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, L., Zhao, Y., Zhang, J., & Zou, J. (2015). Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Systems with Applications, 42, 7344–7355. https://doi.org/10.1016/j.eswa.2015.05.028

    Article  Google Scholar 

  22. Benninger, F., Shor, O., Glik, A., Yaniv-Rosenfeld, A., Valevski, A., Weizman, A., & Khrennikov, A. (2022). EEG p-adic quantum potential accurately identifies depression, schizophrenia and cognitive decline. Dryad. https://doi.org/10.5061/dryad.8gtht76pw

  23. Vázquez, M. A., Maghsoudi, A., & Mariño, I. P. (2021). An interpretable machine learning method for the detection of schizophrenia using EEG signals. Frontiers in Systems Neuroscience, 15, 652662. https://doi.org/10.3389/fnsys.2021.652662

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lee, K. H., Williams, L. M., Breakspear, M., & Gordon, E. (2003). Synchronous gamma activity: A review and contribution to an integrative neuroscience model of schizophrenia. Brain Research. Brain Research Reviews, 41(1), 57–78. https://doi.org/10.1016/s0165-0173(02)00220-5

    Article  PubMed  Google Scholar 

  25. Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews. Neuroscience, 11(2), 100–113. https://doi.org/10.1038/nrn2774

    Article  CAS  PubMed  Google Scholar 

  26. Sponheim, S. R., Clementz, B. A., Iacono, W. G., & Beiser, M. (1994). Resting EEG in first-episode and chronic schizophrenia. Psychophysiology, 31(1), 37–43. https://doi.org/10.1111/j.1469-8986.1994.tb01023.x

    Article  CAS  PubMed  Google Scholar 

  27. Craven, R. (2002). Lateral thinking. Nature Reviews Neuroscience, 3(6), 414. https://doi.org/10.1038/nrn858

    Article  CAS  Google Scholar 

  28. Zhang, W., Li, S., Wang, X., Gong, Y., Yao, L., **ao, Y., Liu, J., Keedy, S. K., Gong, Q., Sweeney, J. A., & Lui, S. (2018). Abnormal dynamic functional connectivity between speech and auditory areas in schizophrenia patients with auditory hallucinations. NeuroImage. Clinical, 19, 918–924. https://doi.org/10.1016/j.nicl.2018.06.018

    Article  PubMed  PubMed Central  Google Scholar 

  29. Okuneye, V. T., Meda, S., Pearlson, G. D., Clementz, B. A., Keshavan, M. S., Tamminga, C. A., Ivleva, E., Sweeney, J. A., Gershon, E. S., & Keedy, S. K. (2020). Resting state auditory-language cortex connectivity is associated with hallucinations in clinical and biological subtypes of psychotic disorders. NeuroImage. Clinical, 27, 102358. https://doi.org/10.1016/j.nicl.2020.102358

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kasai, K., Shenton, M. E., Salisbury, D. F., Hirayasu, Y., Onitsuka, T., Spencer, M. H., Yurgelun-Todd, D. A., Kikinis, R., Jolesz, F. A., & McCarley, R. W. (2003). Progressive decrease of left Heschl gyrus and planum temporale gray matter volume in first-episode schizophrenia: A longitudinal magnetic resonance imaging study. Archives of General Psychiatry, 60(8), 766–775. https://doi.org/10.1001/archpsyc.60.8.766

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Both authors were equally involved in the study. The main person responsible for writing the manuscript was Ateke Goshvarpour.

Corresponding author

Correspondence to Ateke Goshvarpour.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This article examined EEG signals of the RepOD [19, 20], freely available in the public domain. This article contains no studies with human participants performed by any authors.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Informed Consent

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goshvarpour, A., Goshvarpour, A. Evaluating Ratio Indices Based on Electroencephalogram Brainwaves in Schizophrenia Detection. J. Med. Biol. Eng. 44, 127–143 (2024). https://doi.org/10.1007/s40846-024-00851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-024-00851-1

Keywords

Navigation