Log in

Mixtures of log-normal distributions in the mid-scale range of firm-size variables

  • Article
  • Published:
Evolutionary and Institutional Economics Review Aims and scope Submit manuscript

Abstract

In econophysics, firm sales and other firm-size variables follow a power-law distribution in the large-scale range and a log-normal distribution in the mid-scale range. Employing sales (operating revenues) data, we statistically tested the validity of this assertion by applying log-normal distributions and mixtures of them to the comprehensive data available in ORBIS, the world’s largest commercial database on corporate finance. The results confirm that the validity of explaining the entire range of firm-size variables with a single log-normal distribution is extremely low. We also confirmed the statistical superiority of the mid-scale range, which conventionally follows a single log-normal distribution in econophysics, described as a mixture of three log-normal distributions. This result is likely due to the observed effect of the superposition of at least a few industries, such as manufacturing, non-manufacturing, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

We purchased the 2016 ORBIS database from Bureau van Dijk. Since we signed a confidentiality agreement, we are not allowed to disclose the data sets. For the sake of replication, interested researchers can buy the same edition of such database.

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Anderson T, Darling D (1954) A test of goodness-of-fit. J Am Stat Assoc 49:765–769

    Article  Google Scholar 

  • Atienza N, García-Heras J, Muñoz-Pichardo JM, Villa R (2007) On the consistency of MLE in finite mixture models of exponential families. J Stat Plan Inference 137(2):496–505

    Article  Google Scholar 

  • Bǎncescu I, Chivu L, Preda V, Puente-Ajovín M, Ramos A (2019) Comparisons of log-normal mixture and pareto tails, GB2 or log-normal body of Romania’s all cities size distribution. Phys A Stat Mech Appl 526:121017

    Article  Google Scholar 

  • Basford KE, McLachlan GJ (1985) Likelihood estimation with normal mixture models. J R Stat Soc Ser C (Appl Stat) 34(3):282–289

    Google Scholar 

  • Bee M (2015) Estimation of the lognormal-Pareto distribution using probability weighted moments and maximum likelihood. Commun Stat Simul Comput 44(8):2040–2060

    Article  Google Scholar 

  • Bee M (2022) On discriminating between lognormal and Pareto tail: an unsupervised mixture-based approach. Adv Data Anal Classif. https://doi.org/10.1007/s11634-022-00497-4

  • Bee M, Riccaboni M, Schiavo S (2011) Pareto versus lognormal: a maximum entropy test. Phys Rev E 84:026104

    Article  Google Scholar 

  • Bee M, Riccaboni M, Schiavo S (2013) The size distribution of US cities: not Pareto, even in the tail. Econ Lett 120:232–237

    Article  Google Scholar 

  • Bee M, Riccaboni M, Schiavo S (2017) Where Gibrat meets Zipf: scale and scope of French firms. Phys A Stat Mech Appl 481:265–275

    Article  Google Scholar 

  • Belmonte A, Di Clemente R, Buldyrev SV (2014) The Italian primary school-size distribution and the city-size: a complex nexus. Sci Rep 4:5301

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR (2004) Multimodel inference: Understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  Google Scholar 

  • Cabral LMB, Mata J (2003) On the evolution of the firm size distribution: facts and theory. Am Econ Rev 93(4):1075–1090

    Article  Google Scholar 

  • Campolieti M, Ramos A (2021) The distribution of strike size: empirical evidence from Europe and North America in the 19th and 20th centuries. Phys A Stat Mech Appl 563:125424

    Article  Google Scholar 

  • Casella G, Berger RL (2002) Statistical inference, 2nd Edition, Duxbury Press, Pacific Grove

  • Charpentier A, Flachaire E (2022) Pareto models for top incomes and wealth. J Econ Inequal 20:1–25

    Article  Google Scholar 

  • Chu J, Dickin O, Nadarajah S (2019) A review of goodness of fit tests for Pareto distributions. J Comput Appl Math 361:13–41

    Article  Google Scholar 

  • Clarke R (1979) On the lognormality of firm and plant size distributions: some UK evidence. Appl Econ 11(4):415–434

    Article  Google Scholar 

  • Clauset A, Shalizi CR, Newman EJ (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703

    Article  Google Scholar 

  • Cortés LM, Mora-Valencia A, Perote J (2017) Measuring firm size distribution with semi-nonparametric densities. Phys A Stat Mech Appl 485:35–47

    Article  Google Scholar 

  • Cramér H (1928) On the composition of elementary errors. Scand Actuar J 1928(1):13–74

    Article  Google Scholar 

  • Di Giovanni J, Levchenko AA, Rancière R (2011) Power laws in firm size and openness to trade: measurement and implications. J Int Econ 85:42–52

    Article  Google Scholar 

  • Eeckhout J (2004) Gibrat’s law for (all) cities. Am Econ Rev 94(5):1429–1451

    Article  Google Scholar 

  • Efron B, Hinkley DV (1978) Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. Biometrika 65(3):457–482

    Article  Google Scholar 

  • Fiori AM (2020) On firm size distribution: statistical models, mechanisms, and empirical evidence. Stat Methods Appl 29:447–482

    Article  Google Scholar 

  • Gabaix X (1999) Zipf’s law for cities: an explanation. Q J Econ 114:739–767

    Article  Google Scholar 

  • Gabaix X (2009) Power laws in economics and finance. Ann Rev Econ 2009:255–293

    Article  Google Scholar 

  • Gibrat R (1931) Les inégalités économiques. La loi de l’effet proportionnel. Ph.D. thesis, Université de Lyon. Faculté de Droit, Lyon, France

  • Gualandi S, Toscani G (2018) Call center service times are lognormal: a Fokker–Planck description. Math Models Methods Appl Sci 28(8):1513–1527

    Article  Google Scholar 

  • Gualandi S, Toscani G (2019a) Human behavior and lognormal distribution. A kinetic description. Math Models Methods Appl Sci 29(4):717–753

    Article  Google Scholar 

  • Gualandi S, Toscani G (2019b) Size distribution of cities: a kinetic explanation. Phys A Stat Mech Appl 524:221–234

    Article  Google Scholar 

  • Guo J, Xu Q, Chen Q, Wang Y (2013) Firm size distribution and mobility of the top 500 firms in China, the United States and the world. Phys A Stat Mech Appl 392:2903–2914

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1941) Seimicity of the earth. Geol. Soc. Am. Spec. Pap 34:1–131

    Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of Earthquakes in California. Bull Seismol Soc Am 34:185–188

    Article  Google Scholar 

  • Hannan EJ, Quinn BG (1979) The Determination of the order of an autoregression. J R Stat Soc Ser B 41:190–195

    Article  Google Scholar 

  • Ioannides YM, Skouras S (2013) US city size distribution: robustly Pareto, but only in the tail. J Urban Econ 73:18–29

    Article  Google Scholar 

  • Ishikawa A (2021) Statistical properties in firm’s large-scale data. Springer, Berlin

    Book  Google Scholar 

  • Ishikawa A, Fujimoto S, Mizuno T (2023) Statistical laws observed in earthquakes using mesh statistics: an econophysical point of view. Evol Inst Econ Rev. https://doi.org/10.1007/s40844-023-00255-x

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1. Wiley, New York

    Google Scholar 

  • Kiefer NM (1978) Discrete parameter variation: efficient estimation of a switching regression model. Econometrica 46(2):427–434

    Article  Google Scholar 

  • Kolmogorov AN (1933) Sulla Determinazione Empirica di una Legge di Distribuzione. Giornale dell’ Istituto Italiano degli Attuari 4:83–91

    Google Scholar 

  • Kuninaka H (2020) Origin of finite mixture distributions found in the numbers of Japanese schoolchildren. J Phys Soc Jpn 89:064801

    Article  Google Scholar 

  • Kwong HS, Nadarajah S (2019) A note on “Pareto tails and lognormal body of US cities size distribution’’. Phys A Stat Mech Appl 513:55–62

    Article  Google Scholar 

  • McCullough BD, Vinod HD (2003) Verifying the solution from a nonlinear solver: a case study. Am Econ Rev 93(3):873–892

    Article  Google Scholar 

  • McLachlan G, Peel D (2003) Finite mixture models. Wiley-Interscience, New York

    Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  Google Scholar 

  • Newey WK, McFadden DL (1994) Handbook of econometrics, chapter large sample estimation and hypothesis testing. Elsevier, New York, pp 2111–2245

    Google Scholar 

  • Pareto V (1896) Cours d’economie politique. Droz, Geneva

    Google Scholar 

  • Parr JB (1985) A note on the size distribution of cities over time. J Urban Econ 18:199–212

    Article  Google Scholar 

  • Parr JB (2022) Singer and the Pareto distribution: a note. Environ Plan B Urban Anal City Sci 49(3):1067–1073

    Article  Google Scholar 

  • Perline R (2005) Strong, weak and false inverse power laws. Stat Sci 20(1):68–88

    Article  Google Scholar 

  • Puente-Ajovín M, Ramos A, Sanz-Gracia F (2020a) Is there a universal parametric city size distribution? Empirical evidence for 70 countries. Ann Reg Sci 65:727–741

    Article  Google Scholar 

  • Puente-Ajovín M, Ramos A, Sanz-Gracia F, Arribas-Bel D (2020b) How sensitive is city size distribution to the definition of city? The case of Spain. Econ Lett 197:109643

    Article  Google Scholar 

  • Quandt RE (1966) On the size distribution of firms. Am Econ Rev 56(3):416–432

    Google Scholar 

  • Ramos A (2022) Comment on “A statistical evidence of power law distribution in the upper tail of world billionaires’ data 2010–20’’ [Physica A 581 (2021) 126198]. Phys A Stat Mech Appl 589:126637

    Article  Google Scholar 

  • Reed WJ (2001) The Pareto, Zipf and other power laws. Econ Lett 74:15–19

    Article  Google Scholar 

  • Reed WJ (2002) On the rank-size distribution for human settlements. J Reg Sci 42:1–17

    Article  Google Scholar 

  • Reed WJ (2003) The Pareto law of incomes-an explanation and an extension. Phys A Stat Mech Appl 319:469–486

    Article  Google Scholar 

  • Reed WJ, Jorgensen M (2004) The double Pareto-lognormal distribution—a new parametric model for size distributions. Commun Stat Theory Methods 33(8):1733–1753

    Article  Google Scholar 

  • Reginster A (2021) A stochastic analysis of firm dynamics: their impact on the firm size distribution. Phys A Stat Mech Appl 570:125817

    Article  Google Scholar 

  • Schluter C, Trede M (2019) Size distributions reconsidered. Econ Rev 38:695–710

    Article  Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Simon HA, Bonini CP (1958) The size distribution of business firms. Am Econ Rev 48(4):607–617

    Google Scholar 

  • Singer HW (1936) The “Courbe des populations’’. A parallel to Pareto’s law. Econ J 46(182):254–263

    Article  Google Scholar 

  • Su H-L (2019) On the city size distribution: a finite mixture interpretation. J Urban Econ 116:103216

    Article  Google Scholar 

  • Toda AA (2017) A note on the size distribution of consumption: More double Pareto than lognormal. Macroecon Dyn 21(6):1508–1518

    Article  Google Scholar 

  • von Mises RE (1928) Wahrscheinlichkeit. Statistik und Wahrheit. Julius Springer, Berlin

    Book  Google Scholar 

  • Zipf GK (1949) Human behavior and the principle of least effort. Addison-Wesley Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Arturo Ramos: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, resources, software, validation, visualization, writing-original draft. Till Massing: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, software, supervision, validation, visualization, writing-original draft. Atushi Ishikawa: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, software, supervision, validation, visualization, writing-original draft. Shouji Fujimoto: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, software, supervision, validation, visualization, writing-original draft. Takayuki Mizuno: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, software, supervision, validation, visualization, writing-original draft.

Corresponding author

Correspondence to Atushi Ishikawa.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest concerning the research carried out in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was supported by JSPS KAKENHI Grant Numbers 21K04557, 21H01569, and 22K04609, by Deutsche Forschungsgemeinschaft (DFG) Grant Number 455257011, by PID2020-112773GB-I00 of the Spanish Ministerio de Ciencia e Innovación, and by the ADETRE Reference Group S39_20R of Gobierno de Aragón..

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, A., Massing, T., Ishikawa, A. et al. Mixtures of log-normal distributions in the mid-scale range of firm-size variables. Evolut Inst Econ Rev (2024). https://doi.org/10.1007/s40844-024-00283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40844-024-00283-1

Keywords

JEL Classification

Navigation