Log in

Analysis of Wave Motion in Micropolar Thermoelastic Medium Based on Moore–Gibson–Thompson Heat Equation Under Non-local and Hyperbolic Two-Temperature

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The aim of the present investigation is to examine the impacts of non-local, hyperbolic two-temperature (HTT) and impedance parameters on the propagation of plane waves in the context of the micropolar thermoelastic medium under Moore–Gibson–Thompson (MGT) heat equation. The problem is formulated for two dimensional and simplified with the aid of dimensionless quantities and potential functions. A reflection technique is used to solve the problem. The amplitude ratios of reflected waves namely longitudinal displacement wave (LD-wave), thermal wave (T-wave), coupled transverse wave (CD-I wave), and coupled micro-rotational wave (CD-II wave) are obtained against the angle of incidence by applying impedance boundary restrictions. The characteristics of non-local, HTT and impedance parameters on amplitude ratios have been depicted graphically. Some special cases are also obtained for the present study. Physical views presented in the article may be useful for the composition of new materials, geophysics, earthquake engineering, and other scientific disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of Data and Materials

The data used in the manuscript is defined in the section 8 i.e., “Numerical result and discussion” section of the manuscript.

References

  1. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  2. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  Google Scholar 

  3. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  Google Scholar 

  4. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 43, 171–194 (1991)

    MathSciNet  Google Scholar 

  5. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15(2), 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  6. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  7. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  Google Scholar 

  8. Tzou, D.Y.: A unified field approach for heat conduction from micro to macroscales. J. Heat Transf. 117, 8–16 (1995)

    Article  Google Scholar 

  9. Roychoudhari, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30, 231–238 (2007)

    Article  Google Scholar 

  10. Abouelregal, A.E.: Modified fractional thermoelasticity model with multi-relaxation times of higher order: application to spherical cavity exposed to a harmonic varying heat. Waves Random Complex Media 31(5), 1–21 (2019)

    MathSciNet  Google Scholar 

  11. Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids 24(12), 4020–4031 (2019)

    Article  MathSciNet  Google Scholar 

  12. Fernandez, J.R., Quintanilla, R.: Moore–Gibson–Thompson theory for thermoelastic dielectrics. Appl. Math. Mech. 42, 309–316 (2021)

    Article  MathSciNet  Google Scholar 

  13. Marin, M., Ochner, A., Bhatti, M.M.: Some results in Moore–Gibson–Thompson thermoelasticity of dipolar bodies. J. Appl. Math. Mech. (2020). https://doi.org/10.1002/zamm.202000090

    Article  Google Scholar 

  14. Abouelregal, A.E., Ahmed, I.E., Nasr, M.E., Khalil, K.M., Zakria, A., Mohammed, F.A.: Thermoelastic process by a continuous heat source line in an infinite solid via Moore–Gibson–Thompson thermoelasticity. Materials (2020). https://doi.org/10.3390/ma13194463

    Article  Google Scholar 

  15. Bazarra, N., Fernandez, J.R., Quintanilla, R.: On the decay of the energy for radial solutions in Moore–Gibson–Thompson thermoelasticity. Math. Mech. Solids (2021). https://doi.org/10.1177/1081286521994258

    Article  MathSciNet  Google Scholar 

  16. Marin, M., Othman, M.I.A., Seadawy, A.R., Carstea, C.: A domain of influence in the Moore–Gibson–Thompson theory of dipolar bodies. J. Taibah Univ. Sci. 14(1), 653–660 (2021)

    Article  Google Scholar 

  17. Abouelregal, A.E., Sedighi, H.M., Shirazi, A.H., Malikan, M., Eremeyev, V.A.: Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach. Continuum Mech. Thermodyn. 34, 1067–1085 (2022)

    Article  MathSciNet  Google Scholar 

  18. Abouelregal, A.E., Dassios, I., Moaaz, O.: Moore–Gibson–Thompson thermoelastic model effect of laser-induced microstructures of a microbeam sitting on visco-pasternak foundations. Appl. Sci. (2022). https://doi.org/10.3390/app12189206

    Article  Google Scholar 

  19. Kaur, I., Singh, K., Craciun, E.M.: A mathematical study of a semiconducting thermoelastic rotating solid cylinder with modified Moore–Gibson–Thompson heat transfer under the hall effect. Mathematics (2022). https://doi.org/10.3390/math10142386

    Article  Google Scholar 

  20. Kumar, R., Sharma, N., Chopra, S., Vashishth, A.K.: Representation of fundamental solution and vibration of waves in photo-thermoelastic under MGTE model. Ocean Syst. Eng. 13(2), 123–146 (2023)

    Google Scholar 

  21. Youssef, H.M., El-Bary, A.A.: Theory of hyperbolic two temperature generalized thermoelasticity. Mater. Phys. Mech. 40, 158–171 (2018)

    Google Scholar 

  22. Quintanilla, R.: Moore–Gibson–Thompson thermoelasticity with two temperatures. Appl. Eng. Sci. (2020). https://doi.org/10.1016/j.apples.2020.100006

    Article  Google Scholar 

  23. Alzahrani, F.S., Abbas, I.A.: Photo-thermal interactions in a semiconducting media with a spherical cavity under hyperbolic two-temperature model. Mathematics (2020). https://doi.org/10.3390/math8040585

    Article  Google Scholar 

  24. Yadav, A.K.: Photothermal plasma wave in the theory of two-temperature with multi-phase-lag thermo-elasticity in the presence of magnetic field in a semiconductor with diffusion. Waves Random Complex Media. (2020). https://doi.org/10.1080/17455030.2020.1854489

    Article  Google Scholar 

  25. Youssef, H.M., El-Bary, A.A., Al-Lehaibi, E.A.N.: Thermal-stress analysis of a damaged solid sphere using hyperbolic two-temperature generalized thermoelasticity theory. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-82127-1

    Article  Google Scholar 

  26. Lotfy, K., Elidy, E.S., Tantawi, R.S.: Photothermal excitation process during Hyperbolic two-temperature theory for magneto thermoelastic semiconducting medium. SILICON 13, 2275–2288 (2021)

    Article  Google Scholar 

  27. Yadav, A.K.: Reflection of magneto-photothermal plasma waves in a diffusion semiconductor in two- temperature with multi-phase-lag thermoelasticity. Mech. Based Des. Struct. Mach. 50(12), 4117–4138 (2022)

    Article  Google Scholar 

  28. Yadav, A.K.: Magneto-thermo-piezo-elastic wave in an initially stressed rotating mono-clinic crystal in a two-temperature theory. Int. J. Appl. Mech. Eng. 28(3), 127–158 (2023)

    Article  Google Scholar 

  29. Edelen, D.G.B., Laws, N.: On the thermodynamics of systems with nonlocality. Arch. Ration. Mech. Anal. 43, 24–35 (1971)

    Article  MathSciNet  Google Scholar 

  30. Edelen, D.G.B., Green, A.E., Laws, N.: Nonlocal continuum mechanics. Arch. Ration. Mech. Anal. 43, 36–44 (1971)

    Article  MathSciNet  Google Scholar 

  31. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  Google Scholar 

  32. Eringen, A.C.: Theory of non-local thermoelasticity. Int. J. Eng. Sci. 12(12), 1063–1077 (1974)

    Article  Google Scholar 

  33. Das, N., Sarkar, N., Lahiri, A.: Reflection of plane waves from the stress-free isothermal and insulated boundaries of a nonlocal thermoelastic solid. Appl. Math. Model. 73, 526–544 (2019)

    Article  MathSciNet  Google Scholar 

  34. Zhang, P., He, T.: A generalized thermoelastic problem with nonlocal effect and memory-dependent derivative when subjected to a moving heat source. Waves Random Complex Media 30, 42–156 (2020)

    Article  MathSciNet  Google Scholar 

  35. Biswas, S.: Fundamental solution of steady oscillations equations in nonlocal thermoelastic medium with voids. J. Therm. Stresses (2020). https://doi.org/10.1080/01495739.2019.1699482

    Article  Google Scholar 

  36. Biswas, S.: Surface waves in porous nonlocal thermoelastic orthotropic medium. Acta Mech. 231, 2741–2760 (2020)

    Article  MathSciNet  Google Scholar 

  37. Bayones, F.S., Mondal, S., Abo-Dahab, S.M., Kilany, A.A.: Effect of moving heat source on a magneto-thermoelastic rod in the context of Eringen’s nonlocal theory under three-phase lag with a memory dependent derivative. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1901735

    Article  Google Scholar 

  38. Saeed, T., Abbas, I.: Effects of the nonlocal thermoelastic model in a thermoelastic nanoscale material. Mathematics MDPI 10(2), 1–10 (2022)

    Google Scholar 

  39. Biswas, S.: The propagation of plane waves in nonlocal visco-thermoelastic porous medium based on nonlocal strain gradient theory. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1909780

    Article  Google Scholar 

  40. Yadav, A.K., Carrera, E., Marin, M., Othman, M.I.A.: Reflection of hygrothermal waves in a nonlocal theory of coupled thermoelasticity. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022

    Article  Google Scholar 

  41. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15(6), 909–923 (1966)

    MathSciNet  Google Scholar 

  42. Sharma, K., Marin, M.: Effect of distinct conductive and thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space. UPB Sci. Bull. Ser. A Appl. Math. Phys. 75, 121–132 (2013)

    MathSciNet  Google Scholar 

  43. Sharma, K.: Reflection at free surface in micropolar thermoelastic solid with two temperatures. Int. J. Appl. Mech. Eng. 18, 217–234 (2013)

    Article  Google Scholar 

  44. Sharma, K., Sharma, S., Bhargava, R.R.: Propagation of waves in micropolar thermoelastic solid with two temperatures bordered with layers or half spaces of inviscid liquid. Mater. Phys. Mech. 16, 66–81 (2013)

    Google Scholar 

  45. Biswas, S.: Fundamental solution of steady oscillations for porous materials with dual phase lag model in micropolar thermoelasticity. Mech. Based Des. Struct. Mach. (2019). https://doi.org/10.1080/15397734.2018.1557528

    Article  Google Scholar 

  46. Yadav, A.K.: Thermoelastic waves in a fractional-order initially stressed micropolar diffusive porous medium. J. Ocean Eng. Sci. 6, 376–388 (2021)

    Article  Google Scholar 

  47. Yadav, A.K.: Reflection of plane waves in a micropolar thermo-diffusion porous medium. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1956014

    Article  Google Scholar 

  48. Singh, B., Yadav, A.K.: The effect of diffusion on propagation and reflection of waves in a thermo-microstretch solid half-space. Comput. Math. Model. 2(2), 221–234 (2021)

    Article  MathSciNet  Google Scholar 

  49. Singh, B., Yadav, A.K., Gupta, D.: Reflection of plane waves from a micropolar thermo-elastic solid half-space with impedance boundary conditions. J. Ocean Eng. Sci. 4, 122–131 (2019)

    Article  Google Scholar 

  50. Yadav, A.K.: Effect of impedance on the reflection of plane waves in a rotating magneto-thermoelastic solid half-space with diffusion. AIP Adv. (2020). https://doi.org/10.1063/5.0008377

    Article  Google Scholar 

  51. Yadav, A.K.: Effect of impedance boundary on the reflection of plane waves in fraction-order thermoelasticity in an initially stressed rotating half-space with a magnetic field. Int. J. Thermophys. (2021). https://doi.org/10.1007/s10765-020-02753-1

    Article  Google Scholar 

  52. Yadav, A.K.: Reflection of plane waves from the impedance boundary of a magneto-thermo-microstretch solid with diffusion in a fractional order theory of thermoelasticity. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1909781

    Article  Google Scholar 

  53. Yadav, A.K., Carrera, E., Schnack, E., Marin, M.: Effects of memory response and impedance barrier on reflection of plane waves in a nonlocal micropolar porous thermo-diffusive medium. Mech. Adv. Mater. Struct. (2023). https://doi.org/10.1080/15376494.2023.2217556

    Article  Google Scholar 

  54. Tiersten, H.F.: Elastic surface waves guided by thin films. J. Appl. Phys. 40, 770–789 (1969)

    Article  Google Scholar 

  55. Malischewsky, P.: Surface Waves and Discontinuities. Elsevier, Amsterdam (1987)

    Google Scholar 

  56. Eringen, A.C.: Plane waves in nonlocal micropolar elasticity. Int. J. Eng. Sci. 22(8–10), 1113–1121 (1984)

    Article  Google Scholar 

  57. Dhaliwal, R.S., Singh, A.: Dynamic Coupled Thermoelasticity. Hindustan Publication Corporation, New Delhi (1980)

    Google Scholar 

Download references

Funding

No funding is received by any of the author for this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RK, SK, AK. Data curation: AK. Formal analysis: SK. Methodology: RK, SK, AK. Supervision: RK, SK. Writing – original draft: RK, SK, AK.

Corresponding author

Correspondence to Sachin Kaushal.

Ethics declarations

Conflict of interest

No competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I

$$\begin{aligned} {{\text{a}}}_{1}&=\frac{\uplambda +\upmu }{\uprho {{\text{c}}}_{1}^{2}},{{\text{a}}}_{2}=\frac{\upmu +{\text{K}}}{\uprho {{\text{c}}}_{1}^{2}},{{\text{a}}}_{3}=\frac{{\text{K}}{\upgamma }_{1}{{\text{T}}}_{0}}{{\uprho }^{2}{{\text{c}}}_{1}^{4}},{\text{ a}}_{4}=\frac{{\upgamma }_{1}{{\text{T}}}_{0}}{\uprho {{\text{c}}}_{1}^{2}},{{\text{a}}}_{5}=\frac{\upgamma }{\uprho {{\text{c}}}_{1}^{2}\widehat{{\text{j}}}},{{\text{a}}}_{6}=\frac{{{\text{Kc}}}_{1}^{2}}{\widehat{{\text{j}}}{\upgamma }_{1}{\upomega }_{1}^{2}{{\text{T}}}_{0}}, \\ {{\text{a}}}_{7}&=\frac{2{\text{K}}}{\widehat{{\text{j}}}\uprho {\upomega }_{1}^{2}},{{\text{a}}}_{8}=\frac{{{\text{K}}}^{*}}{{\upomega }_{1}{{\text{K}}}_{1}^{*}},{{\text{a}}}_{9}=\frac{{\upgamma }_{1}{{\text{c}}}_{1}^{2}}{{\upomega }_{1}{{\text{K}}}_{1}^{*}},{{\text{a}}}_{10}=\frac{\upmu }{{\upgamma }_{1}{{\text{T}}}_{0}},{{\text{a}}}_{11}=\frac{{\text{K}}}{{\upgamma }_{1}{{\text{T}}}_{0}},{{\text{a}}}_{12}=\frac{{\text{K}}}{\uprho {{\text{c}}}_{1}^{2}}, \\ {{\text{a}}}_{13}&=\frac{\uplambda }{{\upgamma }_{1}{{\text{T}}}_{0}},{{\text{a}}}_{14}=\frac{\left(\uplambda +2\upmu +{\text{K}}\right)}{{\upgamma }_{1}{{\text{T}}}_{0}},{{\text{a}}}_{15}=\frac{\upgamma {\upomega }_{1}^{2}}{\uprho {{\text{c}}}_{1}^{4}} \\ \end{aligned} $$

Appendix II

$$ \begin{aligned} {{\text{A}}}_{01}&=\frac{\left({\upiota \upomega }+{{\text{a}}}_{8}\right)+{\upiota \upomega }{\uptau }_{{\text{e}}}\left(1-{{\upxi }_{1}}^{2}{\upomega }^{2}+{{\text{a}}}_{4}{{\text{a}}}_{9}+{\upomega }^{2}{\upvarsigma }\right)}{\upiota {{\upomega \uptau }}_{{\text{e}}}},\hfill\\{{\text{A}}}_{02}&=\frac{\left({\upiota \upomega }+{{\text{a}}}_{8}\right)(1-{{\upxi }_{1}}^{2}{\upomega }^{2})+\upiota {\uptau }_{{\text{e}}}{\upomega }^{3}{\upvarsigma }\left(1-{{\upxi }_{1}}^{2}{\upomega }^{2}+{{\text{a}}}_{4}{{\text{a}}}_{9}\right)}{\upiota {{\upomega \uptau }}_{{\text{e}}}}, \\ {{\text{A}}}_{03}&=\frac{{\upomega }^{2}\left({{\text{a}}}_{2}+{{\text{a}}}_{5}+{{\text{a}}}_{7}{{\upxi }_{1}}^{2}-{\upomega }^{2}\left({{\upxi }_{1}}^{2}+{{\upxi }_{2}}^{2}\right)\right)-{{\text{a}}}_{2}{{\text{a}}}_{7}}{{{\text{a}}}_{7}-{\upomega }^{2}},\hfill\\ {{\text{A}}}_{04}&=\frac{{\upomega }^{4}\left({{\text{a}}}_{5}{{\upxi }_{1}}^{2}-{\upomega }^{2}{{\upxi }_{1}}^{2}{{\upxi }_{2}}^{2}+{{\text{a}}}_{2}{{\upxi }_{2}}^{2}\right)-{{\upomega }^{2}({\text{a}}}_{2}{{\text{a}}}_{5}+{{\text{a}}}_{3}{{\text{a}}}_{6})}{{{\text{a}}}_{7}-{\upomega }^{2}},\\ {\uptau }_{{\text{e}}}&=\left({\uptau }_{0}-\frac{\upiota }{\upomega }\right).\\ \end{aligned} $$

Appendix III

$${{\text{d}}}_{{\text{i}}}=\frac{\left[{\upomega }^{2}\left(1+{{\upxi }_{1}}^{2}{{\upkappa }_{{\text{i}}}}^{2}\right)-{{\upkappa }_{{\text{i}}}}^{2}\right]}{{{\text{a}}}_{4}\left(1-{\upomega }^{2}{\upvarsigma }{{\upkappa }_{{\text{i}}}}^{2}\right)}, {{\text{f}}}_{{\text{i}}}=\frac{{{\text{a}}}_{2}{\upkappa }_{{\text{j}}}^{2}-{\upomega }^{2}\left(1+{{\upxi }_{1}}^{2}{{\upkappa }_{{\text{j}}}}^{2}\right)}{{{\text{a}}}_{3}},\left({\text{i}}={1,2}\right),\left({\text{j}}={3,4}\right).$$

Appendix IV

$${{\text{b}}}_{1{\text{p}}}=-\left[{{\text{a}}}_{13}{{\text{sin}}}^{2}{\uptheta }_{{\text{p}}}+{{\text{a}}}_{14}{{\text{cos}}}^{2}{\uptheta }_{{\text{p}}}\right]{\upkappa }_{{\text{p}}}^{2}-{{\text{L}}}_{1},{{\text{b}}}_{1{\text{q}}}=\left[{\upkappa }_{{\text{q}}}^{2}\left({{\text{a}}}_{13}-{{\text{a}}}_{14}\right){\cos }{\uptheta }_{{\text{q}}}+{\upkappa }_{{\text{q}}}{{\text{z}}}_{1}{\upiota \omega }\right]{\sin }{\uptheta }_{{\text{q}}},$$
$${{\text{b}}}_{2{\text{p}}}=-{\upkappa }_{{\text{p}}}^{2}{\sin }{\uptheta }_{{\text{p}}}{\cos }{\uptheta }_{{\text{p}}}\left({2{\text{a}}}_{10}+{{\text{a}}}_{11}\right)+{\upkappa }_{{\text{p}}}{{\text{z}}}_{2}{\upiota \omega sin }{\uptheta }_{{\text{p}}}, {{\text{b}}}_{2{\text{q}}}={\upkappa }_{{\text{q}}}^{2}\left[{({\text{a}}}_{10}+{{\text{a}}}_{11}){{\text{cos}}}^{2}{\uptheta }_{q}-{{\text{a}}}_{10}{{\text{sin}}}^{2}{\uptheta }_{{\text{q}}}\right]-{{\text{L}}}_{2},$$
$${{\text{b}}}_{3{\text{p}}}=0,{{\text{b}}}_{3{\text{q}}}={{\text{a}}}_{15}{{\text{f}}}_{{\text{p}}}\upiota {\upkappa }_{{\text{q}}}{\text{cos}}{\uptheta }_{{\text{p}}}+{{\upomega z}}_{3}{{\text{f}}}_{{\text{p}}},{{\text{b}}}_{4{\text{p}}}=(1-{\upvarsigma }{\upkappa }_{{\text{p}}}^{2}){{\text{d}}}_{{\text{p}}}\left[{\upiota {\upkappa }_{{\text{p}}}{\text{K}}}_{1 }^{*}{\text{cos}}{\uptheta }_{{\text{p}}}+{{\upomega z}}_{4}\right],$$
$${{\text{b}}}_{4{\text{q}}}=0,{{\text{L}}}_{1}=\left(1-{\upvarsigma }{\upkappa }_{{\text{p}}}^{2}\right){{\text{d}}}_{{\text{p}}}-{\upkappa }_{{\text{p}}}{{\text{z}}}_{1}{\upiota \omega cos}{\uptheta }_{{\text{p}}}, {\upvarsigma }=\frac{{\upbeta }^{*}}{{{\text{w}}}^{2}},{{\text{L}}}_{2}={{\text{a}}}_{12}{{\text{f}}}_{{\text{p}}}+{\upkappa }_{{\text{q}}}{{\text{z}}}_{2}{\upiota \omega cos}{\uptheta }_{q},$$
$$\left({\text{p}}={1,2}\right),\left({\text{q}}={3,4}\right),$$

where \({{\text{R}}}_{1}, {{\text{R}}}_{2},{{\text{R}}}_{3}\) and \({{\text{R}}}_{4}\) are the amplitude ratios of reflected LD-wave, reflected T-wave, CD-I wave and CD-II wave making an angle \({\uptheta }_{1}, {\uptheta }_{2}, {\uptheta }_{3},\) and \({\uptheta }_{4}\) as shown in Fig. 1 and are given by

$${{\text{R}}}_{1}=\frac{{{\text{A}}}_{1}}{{{\text{A}}}^{*}}, {\text{ R}}_{2}=\frac{{{\text{A}}}_{2}}{{{\text{A}}}^{*}}, {{\text{R}}}_{3}=\frac{{{\text{B}}}_{1}}{{{\text{A}}}^{*}}, {{\text{R}}}_{4}=\frac{{{\text{B}}}_{2}}{{{\text{A}}}^{*}},$$

For incident LD-wave, \({{\text{A}}}^{*}={{\text{A}}}_{01},\)

$${{\text{Y}}}_{1}=-{{\text{b}}}_{11},{{\text{Y}}}_{2}={{\text{b}}}_{21},{{\text{Y}}}_{3}={{\text{b}}}_{31},{{\text{Y}}}_{4}={{\text{b}}}_{41}.$$

For incident T-wave, \({{\text{A}}}^{*}={{\text{A}}}_{02},\)

$${{\text{Y}}}_{1}=-{{\text{b}}}_{12},{{\text{Y}}}_{2}={{\text{b}}}_{22},{{\text{Y}}}_{3}={{\text{b}}}_{32},{{\text{Y}}}_{4}={{\text{b}}}_{42}.$$

For incident CD I-wave, \({{\text{A}}}^{*}={{\text{B}}}_{01},\)

$${{\text{Y}}}_{1}={{\text{b}}}_{13},{{\text{Y}}}_{2}={-{\text{b}}}_{23},{{\text{Y}}}_{3}={{\text{b}}}_{33},{{\text{Y}}}_{4}={{\text{b}}}_{43}.$$

For incident CD II-wave, \({{\text{A}}}^{*}={{\text{B}}}_{02},\)

$${{\text{Y}}}_{1}={{\text{b}}}_{14},{{\text{Y}}}_{2}={-{\text{b}}}_{24},{{\text{Y}}}_{3}={{\text{b}}}_{34},{{\text{Y}}}_{4}={{\text{b}}}_{44}.$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kaushal, S. & Kochar, A. Analysis of Wave Motion in Micropolar Thermoelastic Medium Based on Moore–Gibson–Thompson Heat Equation Under Non-local and Hyperbolic Two-Temperature. Int. J. Appl. Comput. Math 10, 50 (2024). https://doi.org/10.1007/s40819-023-01667-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01667-4

Keywords

Navigation