Log in

Temperature and Motion Analysis of a Rotational Maxwell Fluid with non-Constant Thermal Conductivity and non-Fourier Heat Transfer Model, Using Homotopy Perturbation Method

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Our investigation numerically analyzed the motional behavior and temperature distribution of an upper-convected Maxwell fluid rotating on an expanding sheet in a 3D environment. To solve the governing PDEs, we used techniques to transform the main equations into ODEs. Then we applied an analytical and powerful method known as Homotopy Perturbation Method (HPM). The obtained outcomes were confirmed by the numerical fourth-fifth order Runge-Kutta method and previous results in the literature. Both ways of approving show the acceptable accuracy of our method. The study’s main results illustrate that the depth of the boundary layer depends on the rotation factor. By increasing the rotation factor, the boundary layer’s thickness declines; therefore, the non-Newtonian fluid’s velocities in all directions diminish. The next important parameter that was interpreted is the Deborah number, and we discovered an opposite relation between the Deborah number and the velocities in the horizontal and lateral directions. Prandtl number was another critical parameter that was investigated, so the thermal boundary layer’s thickness increases by raising the Prandtl number. The last parameter was thermal relaxation time, and by increasing that, the fluid temperature at every point rises dramatically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Material (data transparency)

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability (software application or custom code)

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ayegba, P.O., Edomwonyi-Otu, L.C.: Turbulence statistics and flow structure in fluid flow using particle image velocimetry technique: A review. Eng Rep. 2, e12138 (2020). https://doi.org/10.1002/ENG2.12138

    Article  Google Scholar 

  2. Ali, F., Sheikh, N.A., Khan, I., Saqib, M.: Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model. J. Magn. Magn. Mater. 423, 327–336 (2017). https://doi.org/10.1016/j.jmmm.2016.09.125

    Article  Google Scholar 

  3. Talebi Rostami, H., Fallah Najafabadi, M., Hosseinzadeh, K., Ganji, D.D.: Investigation of mixture-based dusty hybrid nanofluid flow in porous media affected by magnetic field using RBF method. Int. J. Ambient Energy. 1–11 (2022). https://doi.org/10.1080/01430750.2021.2023041

  4. Waqas, H., Imran, M., Hussain, S., Ahmad, F., Khan, I., Nisar, K.S., Almatroud, A.O.: Numerical simulation for bioconvection effects on MHD flow of Oldroyd-B nanofluids in a rotating frame stretching horizontally. Math. Comput. Simul. 178, 166–182 (2020). https://doi.org/10.1016/J.MATCOM.2020.05.030

    Article  MathSciNet  MATH  Google Scholar 

  5. Imran, M., Farooq, U., Waqas, H., Anqi, A.E., Safaei, M.R.: Numerical performance of thermal conductivity in Bioconvection flow of cross nanofluid containing swimming microorganisms over a cylinder with melting phenomenon. Case Stud. Therm. Eng. 26, 101181 (2021). https://doi.org/10.1016/J.CSITE.2021.101181

    Article  Google Scholar 

  6. Najafabadi, M.F., TalebiRostami, H., Hosseinzadeh, K., Ganji, D.D.: Investigation of nanofluid flow in a vertical channel considering polynomial boundary conditions by Akbari-Ganji’s method. Theor. Appl. Mech. Lett. 100356 (2022). https://doi.org/10.1016/J.TAML.2022.100356

  7. Fallah Najafabadi, M., Talebi Rostami, H., Farhadi, M.: Analysis of a twisted double-pipe heat exchanger with lobed cross-section as a novel heat storage unit for solar collectors using phase-change material. Int. Commun. Heat. Mass. Transf. 128, 105598 (2021). https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2021.105598

    Article  Google Scholar 

  8. Najafabadi, M.F., Rostami, H.T., Hosseinzadeh, K., Ganji, D.D.: Thermal analysis of a moving fin using the radial basis function approximation. Heat. Transf. (2021). https://doi.org/10.1002/HTJ.22242

    Article  Google Scholar 

  9. Sheikh, N.A., Ali, F., Khan, I., Gohar, M., Saqib, M.: On the applications of nanofluids to enhance the performance of solar collectors: A comparative analysis of Atangana-Baleanu and Caputo-Fabrizio fractional models. Eur. Phys. J. Plus. 132, 1–11 (2017). https://doi.org/10.1140/epjp/i2017-11809-9

    Article  Google Scholar 

  10. Sheikh, N.A., Ali, F., Khan, I., Gohar, M.: A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water based nanofluids with inclined plate: Atangana–Baleanu fractional model. Chaos, Solitons and Fractals. 115, 135–142 (2018). https://doi.org/10.1016/j.chaos.2018.08.020

    Article  MathSciNet  Google Scholar 

  11. Waqas, H., Imran, M., Bhatti, M.M.: Influence of bioconvection on Maxwell nanofluid flow with the swimming of motile microorganisms over a vertical rotating cylinder. Chin. J Phys. 68, 558–577 (2020). https://doi.org/10.1016/J.CJPH.2020.10.014

    Article  MathSciNet  Google Scholar 

  12. Ibrahim, W., Negera, M.: Melting and viscous dissipation effect on upper-convected Maxwell and Williamson nanofluid. Eng Rep. 2, e12159 (2020). https://doi.org/10.1002/ENG2.12159

    Article  Google Scholar 

  13. Waqas, H., Khan, S.U., Shehzad, S.A., Imran, M., Tlili, I.: Activation energy and bioconvection aspects in generalized second-grade nanofluid over a Riga plate: a theoretical model. Appl. Nanosci. 2020 1012. 104445–4458 (2020). https://doi.org/10.1007/S13204-020-01332-Y

  14. Islam, M.T., Ganesan, P.B., Cheng, J., Uddin, M.S.: Single bubble rising behaviors in Newtonian and non-Newtonian fluids with validation of empirical correlations: A computational fluid dynamics study. Eng Rep. 2, e12100 (2020). https://doi.org/10.1002/ENG2.12100

    Article  Google Scholar 

  15. Mkhatshwa, M.P., Motsa, S.S., Sibanda, P.: MHD Mixed Convection Flow of Couple Stress Fluid Over an Oscillatory Stretching Sheet with Thermophoresis and Thermal Diffusion Using the Overlap** Multi-domain Spectral Relaxation Approach. Int. J. Appl. Comput. Math. 2021 73. 71–20 (2021). https://doi.org/10.1007/S40819-021-01043-0

  16. Shit, G.C., Bera, A.: Temperature Response in a Living Tissue with Different Heating Source at the Skin Surface Under Relaxation Time. Int. J. Appl. Comput. Math. 2015 32. 3, 381–394 (2015). https://doi.org/10.1007/S40819-015-0120-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Corr, D.T., Starr, M.J., Vanderby, R., Best, T.M.: A nonlinear generalized maxwell fluid model for viscoelastic materials. J. Appl. Mech. Trans. ASME. 68, 787–790 (2001). https://doi.org/10.1115/1.1388615

    Article  MATH  Google Scholar 

  18. Tan, W., Masuoka, T.: Stability analysis of a Maxwell fluid in a porous medium heated from below. Phys. Lett. Sect. A Gen. At. Solid State Phys. 360, 454–460 (2007). https://doi.org/10.1016/j.physleta.2006.08.054

    Article  MATH  Google Scholar 

  19. Zheng, L., Zhao, F., Zhang, X.: Exact solutions for generalized Maxwell fluid flow due to oscillatory and constantly accelerating plate. Nonlinear Anal. Real. World Appl. 11, 3744–3751 (2010). https://doi.org/10.1016/j.nonrwa.2010.02.004

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, S., Tan, W.: Stability analysis of soret-driven double-diffusive convection of Maxwell fluid in a porous medium. Int. J. Heat. Fluid Flow. 32, 88–94 (2011). https://doi.org/10.1016/j.ijheatfluidflow.2010.10.005

    Article  Google Scholar 

  21. Han, S., Zheng, L., Li, C., Zhang, X.: Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model. Appl. Math. Lett. 38, 87–93 (2014). https://doi.org/10.1016/j.aml.2014.07.013

    Article  MathSciNet  MATH  Google Scholar 

  22. Hayat, T., Khan, M.I., Farooq, M., Alsaedi, A., Waqas, M., Yasmeen, T.: Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat. Mass. Transf. 99, 702–710 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.016

    Article  Google Scholar 

  23. Mustafa, M., Hayat, T., Alsaedi, A.: Rotating flow of Maxwell fluid with variable thermal conductivity: An application to non-Fourier heat flux theory. Int. J. Heat. Mass. Transf. 106, 142–148 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.051

    Article  Google Scholar 

  24. Saleem, S., Awais, M., Nadeem, S., Sandeep, N., Mustafa, M.T.: Theoretical analysis of upper-convected Maxwell fluid flow with Cattaneo–Christov heat flux model. Chin. J Phys. 55, 1615–1625 (2017). https://doi.org/10.1016/j.cjph.2017.04.005

    Article  Google Scholar 

  25. Naramgari, S., Sulochana, C.: MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles. Ain Shams Eng. J. 7, 709–716 (2016). https://doi.org/10.1016/j.asej.2015.05.015

    Article  Google Scholar 

  26. Jha, B.K., Oni, M.O., Aina, B.: Steady fully developed mixed convection flow in a vertical micro-concentric-annulus with heat generating/absorbing fluid: An exact solution. Ain Shams Eng. J. 9, 1289–1301 (2018). https://doi.org/10.1016/J.ASEJ.2016.08.005

    Article  Google Scholar 

  27. Sheikh, N.A., Ching, D.L.C., Khan, I., Kumar, D., Nisar, K.S.: A new model of fractional Casson fluid based on generalized Fick’s and Fourier’s laws together with heat and mass transfer. Alexandria Eng. J. 59, 2865–2876 (2020). https://doi.org/10.1016/j.aej.2019.12.023

    Article  Google Scholar 

  28. Nayak, M.K., Shaw, S., Ijaz Khan, M., Pandey, V.S., Nazeer, M.: Flow and thermal analysis on Darcy-Forchheimer flow of copper-water nanofluid due to a rotating disk: A static and dynamic approach. J. Mater. Res. Technol. 9, 7387–7408 (2020). https://doi.org/10.1016/j.jmrt.2020.04.074

    Article  Google Scholar 

  29. Ibrahim, M., Ijaz Khan, M.: Mathematical modeling and analysis of SWCNT-Water and MWCNT-Water flow over a stretchable sheet. Comput. Methods Programs Biomed. 187, 105222 (2020). https://doi.org/10.1016/j.cmpb.2019.105222

    Article  Google Scholar 

  30. Wang, J., Ijaz Khan, M., Khan, W.A., Abbas, S.Z., Imran Khan, M.: Transportation of heat generation/absorption and radiative heat flux in homogeneous–heterogeneous catalytic reactions of non-Newtonian fluid (Oldroyd-B model). Comput. Methods Programs Biomed. 189, 105310 (2020). https://doi.org/10.1016/j.cmpb.2019.105310

    Article  Google Scholar 

  31. Abbas, S.Z., Khan, M.I., Kadry, S., Khan, W.A., Israr-Ur-Rehman, M., Waqas, M.: Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy. Comput. Methods Programs Biomed. 190, 105362 (2020). https://doi.org/10.1016/j.cmpb.2020.105362

    Article  Google Scholar 

  32. Ajibade, O.A., Jha, B.K., Jibril, H.M., Bichi, Y.A.: Effects of dynamic viscosity and nonlinear thermal radiation on free convective flow through a vertical porous channel. Int. J. Thermofluids. 9, 100062 (2021). https://doi.org/10.1016/j.ijft.2020.100062

    Article  Google Scholar 

  33. Gopi Krishna, S., Shanmugapriya, M.: Inquiry of MHD bioconvective non-newtonian nanofluid flow over a moving wedge using HPM. Mater. Today Proc. 38, 3297–3305 (2021). https://doi.org/10.1016/J.MATPR.2020.10.028

  34. Shire**i, S.Z., Fattahi, M.: Mathematical modeling and analytical solution of two-phase flow transport in an immobilized-cell photo bioreactor using the homotopy perturbation method (HPM). Int. J. Hydrogen Energy. 41, 18405–18417 (2016). https://doi.org/10.1016/J.IJHYDENE.2016.08.055

    Article  Google Scholar 

  35. Jafarimoghaddam, A.: On the Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM) for a nonlinearly stretching sheet flow of Eyring-Powell fluids. Eng. Sci. Technol. an. Int. J. 22, 439–451 (2019). https://doi.org/10.1016/J.JESTCH.2018.11.001

    Article  Google Scholar 

  36. Santoshi, P.N., Reddy, G.V.R., Padma, P.: Flow Features of Non-Newtonian Fluid Through a Paraboloid of Revolution. Int. J. Appl. Comput. Math. 2020 63. 61–22 (2020). https://doi.org/10.1007/S40819-020-00828-Z

  37. Ausaru, A., Nagarani, P.: Effect of External Body Acceleration on Solute Dispersion in Unsteady Non-Newtonian Fluid Flow-the Generalized Dispersion Model Approach. Int. J. Appl. Comput. Math. 2021 81. 8, 1–21 (2021). https://doi.org/10.1007/S40819-021-01209-W

    Article  MATH  Google Scholar 

  38. Ghosh, S.K.: Flow of a Non-Newtonian Heated Fluid in a Tube with a Side Branch. Int. J. Appl. Comput. Math. 2016 33. 31985–1998 (2016). https://doi.org/10.1007/S40819-016-0210-7

  39. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999). https://doi.org/10.1016/S0045-7825(99)00018-3

    Article  MathSciNet  MATH  Google Scholar 

  40. He, J.H.: Homotopy perturbation method for solving boundary value problems. Phys. Lett. Sect. A Gen. At. Solid State Phys. 350, 87–88 (2006). https://doi.org/10.1016/j.physleta.2005.10.005

    Article  MathSciNet  MATH  Google Scholar 

  41. He, J.H.: Homotopy perturbation method: A new nonlinear analytical technique. Appl. Math. Comput. 135, 73–79 (2003). https://doi.org/10.1016/S0096-3003(01)00312-5

    Article  MathSciNet  MATH  Google Scholar 

  42. He, J.H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos, Solitons and Fractals. 26, 695–700 (2005). https://doi.org/10.1016/j.chaos.2005.03.006

    Article  MATH  Google Scholar 

  43. He, J.H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 151, 287–292 (2004). https://doi.org/10.1016/S0096-3003(03)00341-2

    Article  MathSciNet  MATH  Google Scholar 

  44. Ganji, D.D., Afrouzi, G.A., Talarposhti, R.A.: Application of variational iteration method and homotopy-perturbation method for nonlinear heat diffusion and heat transfer equations. Phys. Lett. Sect. A Gen. At. Solid State Phys. 368, 450–457 (2007). https://doi.org/10.1016/j.physleta.2006.12.086

    Article  MATH  Google Scholar 

  45. Ganji, D.D., Ganji, Z.Z., Ganji, H.D.: Determination of temperature distribution for annular fins with temperature dependent thermal conductivity by HPM. Therm. Sci. 15, 111–115 (2011). https://doi.org/10.2298/TSCI11S1111G

    Article  Google Scholar 

  46. Ganji, D.D.: The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer. Phys. Lett. Sect. A Gen. At. Solid State Phys. 355, 337–341 (2006). https://doi.org/10.1016/j.physleta.2006.02.056

    Article  MathSciNet  MATH  Google Scholar 

  47. Jafari, H., Hosseinzadeh, H., Gholami, M.R., Ganji, D.D.: Application of Homotopy Perturbation Method for Heat and Mass Transfer in the Two-Dimensional Unsteady Flow Between Parallel Plates. Int. J. Appl. Comput. Math. 2016 33. 31677–1688 (2016). https://doi.org/10.1007/S40819-016-0253-9

  48. Rao, S.S.: Viscous and Non-Newtonian Flows. Finite Elem. Method Eng. 631–649 (2018). https://doi.org/10.1016/B978-0-12-811768-2.00019-5

  49. White, F., Majadalani, J.: Viscous fluid flow measurement. MEAS. Control. 14, 17 (1981). https://doi.org/10.1177/002029408101400103

    Article  Google Scholar 

  50. Schlichting, H., Gersten, K.: Boundary-Layer Theory. Boundary-Layer Theory. 1–799 (2016). https://doi.org/10.1007/978-3-662-52919-5

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MFN analyzed the results and worked on the code, and she created proper figures for the results. HTR worked on the code and prepared the English text for every section. DDG supervised the whole process.

Corresponding author

Correspondence to Hossein Talebi Rostami.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

PDEs must be converted to ODEs in order to be resolvable. For this act, some ways are beneficial, and one of them is to use similarity equations to convert the main equations of this article. Equations (7), (8), and (11) were converted to ordinary form; these are Eqs. (16)–(18) [49], [50]. The first step in selecting a similarity equation is to compute the layer thickness ψ on the plate. The thickness of the layer must have a relation as follows:

\(\psi =f\left( {u,v} \right)\)

According to the II theorem of dimensional analysis, the thickness of the layer can consider as:

\(\psi \sim \sqrt {\frac{u}{v}}\)

For applying the above proportion to the equation, we must use a constant number for a function. It should be noted that the velocity component in the x-direction on the plate is just a; therefore, we can use this parameter instead of u in the above proportion.

\(\psi \sim \sqrt {\frac{a}{v}}\)

The distance from the plate is in the z-direction, and if we use this distance in \(\psi \sim \sqrt {\frac{a}{v}}\) the dimensionless wall distance is introduced by:

\(\eta =\sqrt {\frac{a}{v}} z\)

By using the trial solutions, we have:

\({\text{ }}u=axf^{\prime}\left( \eta \right){\text{, }}\nu =axg\left( \eta \right){\text{, }}w= - \sqrt {a\nu } f\left( \eta \right){\text{, }}\theta =\frac{{{T_{temp}} - {T_a}}}{{{T_0} - {T_a}}}.\)

So, ordinary equations can be obtained. See Eqs. (16)–(18).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallah Najafabadi, M., Talebi Rostami, H. & Domiri Ganji, D. Temperature and Motion Analysis of a Rotational Maxwell Fluid with non-Constant Thermal Conductivity and non-Fourier Heat Transfer Model, Using Homotopy Perturbation Method. Int. J. Appl. Comput. Math 9, 2 (2023). https://doi.org/10.1007/s40819-022-01465-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01465-4

Keywords

Navigation