Log in

Generation and Propagation of SH Waves Due to Shearing Stress Discontinuity in Linear Orthotropic Viscoelastic Layered Structure

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This present paper deals with the generation and propagation of SH wave due to shearing-stress discontinuity at the common interface of a linear orthotropic viscoelastic layer of finite thickness overlying linear orthotropic viscoelastic half-space. Laplace and Fourier transformations in combination with the modified Cagniard-De Hoop method have been adopted as the solution technique for the present problem. The free surface displacement field has been obtained in integral form for four distinct cases of shear-stress discontinuity (Case 1, 2, 3 and 4) at the common interface of stratum and substrate of the layered structure. Numerical computation and graphical demonstration have been carried out to observe the profound effects of various affecting parameters viz. time of disturbance, distance from the source of disturbance, attenuation parameter and angular frequency on free surface displacement field which serve as major highlights of the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data analysed during the present study are available to download from Ye et al. [35].

References

  1. Adrianus, T.: Reflection and transmission of a transient, elastic, line-source excited SH wave by a planar, elastic bonding surface in a solid. Int. J. Solids Struct. 39, 21–22 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Cagniard, L.: Réflexion et réfraction des ondes séismiques progressives. 6, Gauthier-Villars, Paris (1939)

  3. Cansız, F.B.C., Dal, H., Kaliske, M.: An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Comput. Methods Biomech. Biomed. Eng.: Imaging Vis. 18(11), 1160–1172 (2015)

    Article  Google Scholar 

  4. Chattopadhyay, A., Gupta, S., Kumari, P., Sharma, V.K.: Effect of point source and heterogeneity on the propagation of SH-waves in a viscoelastic layer over a viscoelastic half space. Acta Geophys. 60(1), 119–139 (2012)

    Article  Google Scholar 

  5. De Hoop, A.T.: A modification of Cagniard’s method for solving seismic pulse problems. Appl. Sci. Res. B 8(1), 349–356 (1960)

    Article  Google Scholar 

  6. De Hoop, A.T.: Reflection and transmission of a transient, elastic, line-source excited SH wave by a planar, elastic bonding surface in a solid. Int. J. Solids Struct. 39(21–22), 5379–5391 (2002)

    Article  MathSciNet  Google Scholar 

  7. Deschamps, M., Hosten, B.: The effects of viscoelasticity on the reflection and transmission of ultrasonic waves by an orthotropic plate. J. Acoust. Soc. Am. 91(4), 2007–2015 (1992)

    Article  Google Scholar 

  8. Destrade, M.: Surface waves in orthotropic incompressible materials. J. Acoust. Soc. Am. 110(2), 837–840 (2001)

    Article  Google Scholar 

  9. Diaz, J., Joly, P.: Application of Cagniard de Hoop method to the analysis of perfectly matched layers. In: 3rd IFAC Workshop on Fractional Differentiation and its Applications, 2008

  10. Drijkoningen, G.G., Chapman, C.H.: Tunneling rays using the Cagniard-de Hoop method. Bull. Seismol. Soc. Am. 78(2), 898–907 (1988)

    Google Scholar 

  11. Endo, V.T., de Carvalho Pereira, J.C.: Linear orthotropic viscoelasticity model for fiber reinforced thermoplastic material based on Prony series. Mech Time Depend Mater. 21(2), 199–221 (2017)

    Article  Google Scholar 

  12. ERDELu, A.: Tables o/Integral Trans/orms. McGraw Hill Book Company 1, 75-277 (1954)

  13. Garvin, W.W.: Exact transient solution of the buried line source problem. Proc. R. Soc. A 234(1199), 528–541 (1956)

    MathSciNet  MATH  Google Scholar 

  14. Gogna, M.L., Chander, S.: Reflection and transmission of SH-waves at an interface between anisotropic inhomogeneous elastic and viscoelastic half-spaces. Acta Geophys. Pol. 33(4), 357–375 (1985)

    Google Scholar 

  15. Kaushik, V.P., Chopra, S.D.: Reflection and transmission of general plane SH-waves at the plane interface between two heterogeneous and homogeneous viscoelastic media. Geophys. Res. Bull. 20, 1–20 (1983)

    Google Scholar 

  16. Kumar, S., Mandal, D.: generation of SH-type waves due to shearing stress discontinuity in an anisotropic layer overlying an initially stressed elastic half-space. Math. Mech. Complex Syst. 6(3), 201–212 (2018)

    Article  MathSciNet  Google Scholar 

  17. Nag, K.R., Pal, P.C.: The disturbance of SH-type due to shearing stress discontinuity at the Interface of two layers overlying a semi-infinite medium. Arch. Mech. 29(6), 821–827 (1977)

    MathSciNet  MATH  Google Scholar 

  18. Nag, K.R.: Disturbance due to Shearing-stress discontinuity in a semi-infinite elastic medium. Geophys. J. Int. 6(4), 468–478 (1962)

    Article  Google Scholar 

  19. Newell, K.J., Sinclair, A.N., Fan, Y., Georgescu, C.: Ultrasonic determination of stiffness properties of an orthotropic viscoelastic material. Res. Nondestruct. Eval. 9(1), 25–39 (1997)

    Article  Google Scholar 

  20. Othmani, C., Dahmen, S., Njeh, A., Ghozlen, M.H.B.: Investigation of guided waves propagation in orthotropic viscoelastic carbon–epoxy plate by Legendre polynomial method. Mech. Res. Commun. 74, 27–33 (2016)

    Article  Google Scholar 

  21. Pal, A.K.: The propagation of Love waves in a dry sandy layer. Acta Geophys. Pol. 33(2), 183–188 (1985)

    Google Scholar 

  22. Pal, P.C., Debnath, L.: Generation of SH-type waves in layered anisotropic elastic media. Int. J. Math. Math. Sci. 2(4), 703–716 (1979)

    Article  MathSciNet  Google Scholar 

  23. Pal, P.C., Mandal, D.: Generation of SH-type waves due to shearing stress discontinuity in a sandy layer overlying an isotropic and inhomogeneous elastic half-space. Acta Geophys. 62(1), 44–58 (2014)

    Article  Google Scholar 

  24. Pal, P.C., Sen, B.: Disturbance of SH type waves due to shearing stress discontinuity in an orthotropic media. Int. J. Acad. Res. 3, 4 (2011)

    Google Scholar 

  25. Pal, P., Kumar, L.: Generation of SH waves by a moving stress discontinuity in an anisotropic soil layer over an elastic half space. Acta Geophys. Pol. 48(4), 465–478 (2000)

    Google Scholar 

  26. Pal, P.C.: Generation of SH-type waves due to non-uniformly moving stress-discontinuity in layered anisotropic elastic half-space. Acta Mech. 49(3–4), 209–220 (1983)

    Article  Google Scholar 

  27. Propp, A., Gizzi, A., Levrero-Florencio, F., Ruiz-Baier, R.: An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion. Biomech Model Mechanobiol 19(20), 633–659 (2020)

    Article  Google Scholar 

  28. Schniewind, A.P., Barrett, J.D.: Wood as a linear orthotropic viscoelastic material. Wood Sci. Technol. 6(1), 43–57 (1972)

    Article  Google Scholar 

  29. Singh, M.K., Alam, P.: Surface wave analysis in orthotropic composite structure with irregular interfaces. Int. J. Appl. Comput. Math. 6, 13 (2020)

    Article  MathSciNet  Google Scholar 

  30. Spencer, T.W.: Two dimensional problems. J. Geophys. Res. 63(3), 637–643 (1958)

    Article  Google Scholar 

  31. Thomson, W.: IV On the elasticity and viscosity of metals. Proc. R. Soc. Lond. 14, 289–297 (1865)

    Article  Google Scholar 

  32. Vignjevic, R., Campbell, J.C., Bourne, N.K., Djordjevic, N.: Modeling shock waves in orthotropic elastic materials. J. Appl. Phys. 104(4), 044904 (2008)

    Article  Google Scholar 

  33. Voigt, W.: Ueber innere Reibung fester Körper, insbesondere der Metalle. Ann. Phys. 283(12), 671–693 (1892)

    Article  Google Scholar 

  34. Yan, S., Bae, J.C., Kalnaus, S., **ao, X.: Orthotropic viscoelastic modeling of polymeric battery separator. J. Electrochem. Soc. 167(9), 090530 (2020)

    Article  Google Scholar 

  35. Yu, J.G., Ratolojanahary, F.E., Lefebvre, J.E.: Guided waves in functionally graded viscoelastic plates. Compos. Struct. 93(11), 2671–2677 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors convey their sincere thanks to Indian Institute of Technology (Indian School of Mines), Dhanbad and The National Board for Higher Mathematics (NBHM) for their financial support to carry out this research work though the project with Grant Number [2/48(3)/2016/NBHM(R.P)/R&D II/4528].

Author information

Authors and Affiliations

Authors

Contributions

AKS: Conceptualization, Methodology, Formal analysis, Supervision, Funding acquisition, Visualization. SK: Formal analysis, Investigation, Writing—Original Draft, Writing—Review and Editing, Software, Validation, Formal analysis, Investigation. MSC Formal analysis, Writing—Review and Editing, Supervision, Visualization, Software, Validation, Data Curation.

Corresponding author

Correspondence to Siddhartha Koley.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ \begin{aligned}& \overline{c}_{44} = \left( {c_{44}^{R} + pc_{44}^{I} } \right)\,,\,\,\overline{c}_{55} = \left( {c_{55}^{R} + pc_{55}^{I} } \right),\,P_{1}^{2} = \frac{{p^{2} \rho_{1} + \overline{c}_{44}^{\left( 1 \right)} \eta^{2} }}{{\overline{c}_{55}^{\left( 1 \right)} }},P_{2}^{2} = \frac{{p^{2} \rho_{2} + \overline{c}_{44}^{\left( 2 \right)} \eta^{2} }}{{\overline{c}_{55}^{\left( 2 \right)} }}, \\ & D_{1} = - \left( {\overline{c}_{55}^{\left( 2 \right)} } \right)^{2} \frac{{\beta_{11}^{2} }}{{\beta_{12}^{2} }} + \left( {\overline{c}_{55}^{\left( 1 \right)} } \right)^{2} \,,\,\,\,D_{2} = \left( {\overline{c}_{55}^{\left( 1 \right)} } \right)^{2} \phi_{1}^{2} - \left( {\overline{c}_{55}^{\left( 2 \right)} } \right)^{2} \phi_{2}^{2} ,\,S = \frac{{\sqrt {y_{1}^{2} + h^{2} \phi_{1}^{2} } }}{{\beta_{11}^{2} \phi_{1}^{2} }},\\& E = \frac{{y_{1} }}{{\beta_{11}^{2} \phi_{1}^{2} }},\,\,P = \frac{h}{{\beta_{11} }}, \\ & \alpha = {\text{tan}}^{ - 1} \left( {\frac{{y_{1} }}{{h\phi_{1}^{2} \beta_{11} }}} \right),\,\beta_{11} = \left( {\frac{{\overline{c}_{55}^{1} }}{{\rho_{1} }}} \right)^{\frac{1}{2}} ,\,\,\,\beta_{12} = \left( {\frac{{\overline{c}_{55}^{2} }}{{\rho_{2} }}} \right)^{\frac{1}{2}} \,,\,\,\,\,\phi_{1} = \left( {\frac{{\frac{{\overline{c}_{44}^{1} }}{{\rho_{1} }}}}{{\frac{{\overline{c}_{55}^{1} }}{{\rho_{1} }}}}} \right)^{\frac{1}{2}} ,\,\,\,\phi_{2} = \left( {\frac{{\frac{{\overline{c}_{44}^{1} }}{{\rho_{2} }}}}{{\frac{{\overline{c}_{55}^{1} }}{{\rho_{2} }}}}} \right)^{\frac{1}{2}} , \\ & G^{\prime}_{1} \left( {\xi_{m} \left( t \right)} \right) = {\text{Im}} \left( {F^{\prime}_{2} (\xi_{m} (t))\frac{d}{dt}\xi_{m} (t)} \right)\,H\left( {t - \frac{{\left( {y_{m}^{2} + h^{2} \phi_{1}^{2} } \right)^{\frac{1}{2}} }}{{\beta_{11}^{2} \phi_{1}^{2} }}} \right), \\ & F^{\prime}_{2} (\xi_{m} (t)) = \frac{1}{{\left( {\xi_{m} } \right)\left[ {\overline{c}_{55}^{\left( 1 \right)} \left[ {1 + \xi_{m}^{2} \phi_{1}^{2} } \right]^{\frac{1}{2}} + \overline{c}_{55}^{\left( 2 \right)} \left[ {\frac{{\beta_{11}^{2} }}{{\beta_{12}^{2} }} + \xi_{m}^{2} \phi_{2}^{2} } \right]^{\frac{1}{2}} } \right]}}. \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Koley, S. & Chaki, M.S. Generation and Propagation of SH Waves Due to Shearing Stress Discontinuity in Linear Orthotropic Viscoelastic Layered Structure. Int. J. Appl. Comput. Math 7, 244 (2021). https://doi.org/10.1007/s40819-021-01193-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01193-1

Keywords

Navigation