Log in

Solution of a Two Dimensional Thermoelastic Problem Due to an Exponentially Distributed Temperature at the Boundary in Presence of a Moving Heat Source

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a study on a two dimensional thermoelastic problem involving isotropic, homogeneous half-space media with a moving heat source. The problem has been constructed subject to exponentially varying temperature at the boundary. Laplace transformation and Fourier transformation are used to the governing equations and solutions are made for thermal stress distribution and temperature distribution in the Laplace–Fourier transformed domain. The inverse Laplace–Fourier transformation is obtained numerically and the results are presented graphically with discussions on different values of dam** parameter of exponentially varying temperature. It has been observed that an increment of the decaying parameter diminishes the magnitude of physical quantities. The significant effect of moving heat source velocity on stress and temperature has been noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(\lambda , \mu \) :

Lame’s constant

\(\rho \) :

Density

c :

Specific heat

t :

Time

\(\theta _0\) :

Reference temperature

\(\sigma _{ij}\) :

Component of stress tensor

\(e_{ij}\) :

Component of strain tensor

\(u_i\) :

Component of displacement

\(\theta \) :

Temperature increase with respect to the uniform reference temperature \(\theta _0\)

\(\alpha _t\) :

Coefficient of linear thermal expansion

\(K^*\) :

Material constant characteristic of the theory

K :

Coefficient of thermal conductivity

Q :

Rate of internal heat generation per unit mass

l :

A standard length

v :

A standard wave speed

\(\varepsilon \) :

Thermoelastic coupling constant

\(C_P\) :

Non dimensional dilatational

\(C_S\) :

Shear wave velocity

\(C_T\) :

Thermal wave velocity

\(C_K\) :

Dam** co-efficient for Green–Nagdhi model III

References

  1. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  2. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  Google Scholar 

  3. Dhaliwal, R.S., Sherief, H.H.: Generalized thermoelasticity for anisotropic media. Q. Appl. Math. 38(1), 1–8 (1980)

    Article  MathSciNet  Google Scholar 

  4. Ignaczak, J.: Uniqueness in generalized thermoelasticity. J. Therm. Stresses 2(2), 171–175 (1979)

    Article  Google Scholar 

  5. Ignaczak, J.: A note on uniqueness in thermoelasticity with one relaxation time. J. Therm. Stresses 5(3–4), 257–263 (1982)

    Article  MathSciNet  Google Scholar 

  6. Sherief, H.H.: On uniqueness and stability in generalized thermoelasticity. Q. Appl. Math. 44(4), 773–778 (1987)

    Article  MathSciNet  Google Scholar 

  7. Sherief, H.H., Dhaliwal, R.S.: A uniqueness theorem and a variational principle for generalized thermoelasticity. J. Therm. Stresses 3(2), 223–230 (1980)

    Article  Google Scholar 

  8. Green, A., Lindsay, K.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  Google Scholar 

  9. Chandrasekharaiah, D.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39(3), 355–376 (1986). https://doi.org/10.1115/1.3143705

    Article  MATH  Google Scholar 

  10. Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stresses 22(4–5), 451–476 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Green, A., Naghdi, P.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432(1885), 171–194 (1991)

    Article  MathSciNet  Google Scholar 

  12. Green, A., Naghdi, P.: Thermoelasticity without energy dissipation. J. Elast. 31(3), 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  13. Quintanilla, R., Racke, R.: Stability for thermoelasticity of type III. Discrete Contin Dyn Syst B 3, 383 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Quintanilla, R., Straughan, B.: A note on discontinuity waves in type III thermoelasticity. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 460, 1169–1175 (2004)

    Article  MathSciNet  Google Scholar 

  15. Chandrasekharaiah, D.: A note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation. J. Elast. 43(3), 279–283 (1996)

    Article  MathSciNet  Google Scholar 

  16. Chandrasekharaiah, D.S.: A uniqueness theorem in the theory of thermoelasticity without energy dissipation. J. Therm. Stresses 19(3), 267–272 (1996). https://doi.org/10.1080/01495739608946173

    Article  MathSciNet  Google Scholar 

  17. Chandrasekharaiah, D., Srinath, K.: Thermoelastic interactions without energy dissipation due to a point heat source. J. Elast. 50(2), 97–108 (1998)

    Article  Google Scholar 

  18. Mallik, S.H., Kanoria, M.: A two dimensional problem for a transversely isotropic generalized thermoelastic thick plate with spatially varying heat source. Eur. J. Mech. A/Solids 27(4), 607–621 (2008). https://doi.org/10.1016/j.euromechsol.2007.09.002

    Article  MathSciNet  MATH  Google Scholar 

  19. Mallik, S., Kanoria, M.: Effect of rotation on thermoelastic interaction with and without energy dissipation in an unbounded medium due to heat source-an eigenvalue approach. Far East J. Appl. Math. 23, 147–167 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Abouelregal, A.E.: Generalized thermoelastic infinite transversely isotropic body with a cylindrical cavity due to moving heat source and harmonically varying heat. Meccanica 48(7), 1731–1745 (2013). https://doi.org/10.1007/s11012-013-9705-z

    Article  MathSciNet  MATH  Google Scholar 

  21. Roychoudhuri, S., Dutta, P.S.: Thermo-elastic interaction without energy dissipation in an infinite solid with distributed periodically varying heat sources. Int. J. Solids Struct. 42(14), 4192–4203 (2005). https://doi.org/10.1016/j.ijsolstr.2004.12.013

    Article  MATH  Google Scholar 

  22. Banik, S., Mallik, S.H., Kanoria, M.: Thermoelastic interaction with energy dissipation in an infinite solid with distributed periodically varying heat sources. Int. J. Pure Appl. Math. 34(2), 229–243 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Amin, M.M., El-Bary, A.A., Youssef, H.M.: Two-dimensional problem of generalized thermoelastic half-space subjected to moving heat source. Microsyst. Technol. 23(10), 4611–4617 (2017). https://doi.org/10.1007/s00542-017-3281-4

    Article  Google Scholar 

  24. Abouelregal, A.E., Yao, S.-W., Ahmad, H.: Analysis of a functionally graded thermopiezoelectric finite rod excited by a moving heat source. Results Phys. 19, 103389 (2020). https://doi.org/10.1016/j.rinp.2020.103389

    Article  Google Scholar 

  25. Abouelregal, A.E., Ahmad, H., Yao, S.-W.: Functionally graded piezoelectric medium exposed to a movable heat flow based on a heat equation with a memory-dependent derivative. Materials 13(18), 3953 (2020). https://doi.org/10.3390/ma13183953

    Article  Google Scholar 

  26. Abouelregal, A.E., Mohammad-Sedighi, H., Shirazi, A.H., Malikan, M., Eremeyev, V.A.: Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore-Gibson-Thompson approach. Continuum Mech. Thermodyn. (2021). https://doi.org/10.1007/s00161-021-00998-1

    Article  Google Scholar 

  27. Chandrasekharaiah, D.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Article  Google Scholar 

  28. Piskunov, V.N., Sokovishin, Yu.A., Stepanov, V.F.: Free convection around a plate with temperature decreasing exponentially along the surface. J. Eng. Phys. 19(2), 933–935 (1970). https://doi.org/10.1007/BF00828762

    Article  Google Scholar 

  29. Abouelregal, A.: Rotating magneto-thermoelastic rod with finite length due to moving heat sources via Eringen’s nonlocal model. J. Comput. Appl. Mech. 50(1), 118–126 (2019). https://doi.org/10.22059/jcamech.2019.275893.360

  30. Honig, G., Hirdes, U.: A method for the numerical inversion of Laplace transforms. J. Comput. Appl. Math. 10(1), 113–132 (1984)

    Article  MathSciNet  Google Scholar 

  31. Youssef, H.M., Al-Lehaibi, E.A.: State-space approach of two-temperature generalized thermoelasticity of one-dimensional problem. Int. J. Solids Struct. 44(5), 1550–1562 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Inversion of the Fourier transform If \(\bar{f}^{*}(x,q,p)\) Laplace–Fourier transform of the function f(xyt) then the inversion for Fourier transform carried out in following manners

$$\begin{aligned} \bar{f}(x,y,p)= & {} \frac{1}{\sqrt{2\pi }}\int _{-\infty }^{\infty } \bar{f}^*(x,q,p)e^{iqy}dq \\= & {} \sqrt{\frac{2}{\pi }}(\int _{0}^{\infty } \bar{f_1}^*(x,q,p) cos(qy)dq +i\int _{0}^{\infty } \bar{f_2}^*(x,q,p) sin(qy)dq) \end{aligned}$$

where \(\bar{f_1}^*\) and \(\bar{f_2}^*\) represent the even and odd parts of \(\bar{f}^*\). Henceforth, first the transformation \(z=e^{-q}\) and then the Gauss-quadrature formula for 7-point has been applied to obtain \(\bar{f}(x,y,p)\).

Inversion of the Laplace transform According to Honig and Hirdes [30] The inversion formula of \(\bar{f}(x,y,p)\) is

$$\begin{aligned} f(x,y,t)=\frac{e^{dt}}{2\pi }\int _{-\infty }^{\infty }\bar{f}(x,y,d+iw)dw \end{aligned}$$

where \(d>\) all real parts of the singularities (for p) of \(\bar{f}(x,y,p)\). Expand the function \(g(x,y,d,t)=e^{-dt}f(x,y,t)\) in a Fourier series in the interval [0, 2T] for time variable. Thus the approximate formula is

$$\begin{aligned} f(x,y,t)\approx f_N(x,y,t)=\frac{c_0}{2}+\sum _{k=1}^{N}c_k \text {for } 0 \le t \le 2T \end{aligned}$$
(49)

here \(c_k=\frac{e^{dt}}{T}Re[e^{ik\pi / T} \bar{f}(x,y,d+ik\pi /T)]\).

Two methods such as Korrecktur and \(\varepsilon \)-algorithm are used to reduce the discretization error and the truncation error and after that to accelerate the convergence. The Korrektur method is used to evaluate the function f(xyt) and is defined as:

$$\begin{aligned} f(x,y,t)= f_{NK}(x,y,t)= f_N(x,y,t)-e^{-2dT}f_M(x,y,t+2T) \end{aligned}$$

whereas, the \(\varepsilon \)-algorithm is employed to increase the rate of convergence of the series given in approximation formula (49). Let N = 2r + 1 is an odd natural number and \(s_m=\sum _{k=1}^{m}c_k\) in (49). The \(\varepsilon \)-algorithm is:

$$\begin{aligned} {\varepsilon _{n+1}}^{(m)}={\varepsilon _{n-1}}^{(m+1)}+\frac{1}{{\varepsilon _{n}}^{(m+1)}-{\varepsilon _{n}}^{(m)}},\quad {\varepsilon _{0}}^{(m)}=0,\,\,\, {\varepsilon _{1}}^{(m)}=s_m ,\,\,\, n=1,2,3 \dots \end{aligned}$$

then the sequence \( {\varepsilon _{1}}^{(1)},{\varepsilon _{3}}^{(1)},{\varepsilon _{5}}^{(1)} \dots \) converges to \(f_{\infty }(x,y,t)-c_0/2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Pal Sarkar, S. Solution of a Two Dimensional Thermoelastic Problem Due to an Exponentially Distributed Temperature at the Boundary in Presence of a Moving Heat Source. Int. J. Appl. Comput. Math 8, 77 (2022). https://doi.org/10.1007/s40819-021-01166-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01166-4

Keywords

Mathematics Subject Classification

Navigation